Hydrogen production using cocaine metabolite in microbial electrolysis cells

被引:3
|
作者
Kilinc, Burak [1 ]
Akagunduz, Dilan [1 ]
Ozdemir, Murat [2 ]
Kul, Aykut [3 ]
Catal, Tunc [1 ,4 ]
机构
[1] Uskudar Univ, Istanbul Prot Res Applicat & Inovat Ctr PROMER, TR-34662 Istanbul, Turkiye
[2] Uskudar Univ, Personalized Med Applicat & Res Ctr KIMER, TR-34662 Istanbul, Turkiye
[3] Istanbul Univ, Dept Analyt Chem, TR-34116 Istanbul, Turkiye
[4] Uskudar Univ, Dept Mol Biol & Genet, TR-34662 Istanbul, Turkiye
关键词
Benzoylecgonine; Cocaine; Hydrogen microbial electrolysis cell; BENZOYLECGONINE; REMOVAL; WATER; PROFILE; URINE;
D O I
10.1007/s13205-023-03805-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In this study, the effects of cocaine metabolite, benzoylecgonine, commonly found in wastewater on hydrogen production were investigated using microbial electrolysis cells. Benzoylecgonine dissolved in synthetic urine and human urine containing benzoylecgonine were inoculated to evaluate hydrogen production performance in microbial electrolysis cells. Microbial electrolysis cells were inoculated with synthetic urine and human urine containing the cocaine metabolite benzoylecgonine for hydrogen gas production performance. Gas production was observed and measured daily by gas chromatography. GC-MS was used to analyze the compounds found in human urine before and after operation in microbial electrolysis cells. The metabolite's pH values and optical density in microbial electrolysis cells were analyzed spectrophotometrically. Hydrogen gas was successfully produced in microbial electrolysis cells (similar to 5.5 mL) at the end of the 24th day in the presence of benzoylecgonine in synthetic urine. Human urine containing benzoylecgonine also generated hydrogen in microbial electrolysis cells. In conclusion, microbial electrolysis cells can be used to remove cocaine metabolites from contaminated wastewater generating hydrogen gas.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Asymmetric Neutral-alkaline Microbial Electrolysis Cells for Hydrogen Production
    Dai, Ling
    Xiang, Lijuan
    Zhang, Mengtian
    Wen, Zhenhai
    Xu, Qiuhua
    Chen, Kai
    Zhao, Zhifeng
    Ci, Suqin
    CHEMELECTROCHEM, 2022, 9 (07):
  • [22] Hydrogen production in single-chamber microbial electrolysis cells using Ponceau S dye
    Rumeysa Cebecioglu
    Dilan Akagunduz
    Tunc Catal
    3 Biotech, 2021, 11
  • [23] Treatment of recalcitrant wastewater and hydrogen production via microbial electrolysis cells
    Shen, Ruixia
    Zhao, Lixin
    Lu, Jianwen
    Watson, Jamison
    Si, Buchun
    Chen, Xi
    Meng, Haibo
    Yao, Zonglu
    Feng, Jing
    Liu, Zhidan
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2019, 12 (05) : 179 - 189
  • [24] Suppression of methanogenesis for hydrogen production in single chamber microbial electrolysis cells using various antibiotics
    Catal, Tunc
    Lesnik, Keaton Larson
    Liu, Hong
    BIORESOURCE TECHNOLOGY, 2015, 187 : 77 - 83
  • [25] Hydrogen Production in Microbial Electrolysis Cells Using an Alginate Hydrogel Bioanode Encapsulated with a Filter Bag
    Hirsch, Lea Ouaknin
    Gandu, Bharath
    Chiliveru, Abhishiktha
    Dubrovin, Irina Amar
    Jukanti, Avinash
    Schechter, Alex
    Cahan, Rivka
    POLYMERS, 2024, 16 (14)
  • [26] Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells
    Selembo, Priscilla A.
    Merrill, Matthew D.
    Logan, Bruce E.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (02) : 428 - 437
  • [27] Hydrogen production in single-chamber microbial electrolysis cells using Ponceau S dye
    Cebecioglu, Rumeysa
    Akagunduz, Dilan
    Catal, Tunc
    3 BIOTECH, 2021, 11 (01)
  • [28] Hydrogen production using single-chamber membrane-free microbial electrolysis cells
    Hu, Hongqiang
    Fan, Yanzhen
    Liu, Hong
    WATER RESEARCH, 2008, 42 (15) : 4172 - 4178
  • [29] MICROBIAL ELECTROLYSIS CELL: HYDROGEN PRODUCTION USING MICROBIAL CONSORTIA FROM ROMANIAN WATERS
    Cucu, A.
    Costache, T. A.
    Divona, M.
    Tiliakos, A.
    Stamatin, I.
    Ciocanea, A.
    DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 2013, 8 (03) : 1179 - 1190
  • [30] Improved hydrogen gas production in microbial electrolysis cells using inexpensive recycled carbon fibre fabrics
    Carlotta-Jones, Daniel Indiana
    Purdy, Kevin
    Kirwan, Kerry
    Stratford, James
    Coles, Stuart R.
    BIORESOURCE TECHNOLOGY, 2020, 304