Hybrid autoencoder with orthogonal latent space for robust population structure inference

被引:0
|
作者
Yuan, Meng [1 ,2 ,3 ]
Hoskens, Hanne [2 ,3 ]
Goovaerts, Seppe [2 ,3 ]
Herrick, Noah [4 ]
Shriver, Mark D. [5 ]
Walsh, Susan [4 ]
Claes, Peter [1 ,2 ,3 ,6 ]
机构
[1] Katholieke Univ Leuven, ESAT PSI, Dept Elect Engn, Leuven, Belgium
[2] Katholieke Univ Leuven, Dept Human Genet, Leuven, Belgium
[3] Univ Hosp Leuven, Med Imaging Res Ctr, Leuven, Belgium
[4] Indiana Univ Purdue Univ Indianapolis, Dept Biol, Indianapolis, PA USA
[5] Penn State Univ, Dept Anthropol, State Coll, PA USA
[6] Murdoch Childrens Res Inst, Melbourne, Vic, Australia
关键词
PRINCIPAL COMPONENT ANALYSIS; ANCESTRY ESTIMATION; STRATIFICATION; REPRESENTATIONS; GENOTYPE; GENETICS;
D O I
10.1038/s41598-023-28759-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Analysis of population structure and genomic ancestry remains an important topic in human genetics and bioinformatics. Commonly used methods require high-quality genotype data to ensure accurate inference. However, in practice, laboratory artifacts and outliers are often present in the data. Moreover, existing methods are typically affected by the presence of related individuals in the dataset. In this work, we propose a novel hybrid method, called SAE-IBS, which combines the strengths of traditional matrix decomposition-based (e.g., principal component analysis) and more recent neural network-based (e.g., autoencoders) solutions. Namely, it yields an orthogonal latent space enhancing dimensionality selection while learning non-linear transformations. The proposed approach achieves higher accuracy than existing methods for projecting poor quality target samples (genotyping errors and missing data) onto a reference ancestry space and generates a robust ancestry space in the presence of relatedness. We introduce a new approach and an accompanying open-source program for robust ancestry inference in the presence of missing data, genotyping errors, and relatedness. The obtained ancestry space allows for non-linear projections and exhibits orthogonality with clearly separable population groups.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Hybrid autoencoder with orthogonal latent space for robust population structure inference
    Meng Yuan
    Hanne Hoskens
    Seppe Goovaerts
    Noah Herrick
    Mark D. Shriver
    Susan Walsh
    Peter Claes
    Scientific Reports, 13
  • [2] Visual Servoing in Autoencoder Latent Space
    Felton, Samuel
    Brault, Pascal
    Fromont, Elisa
    Marchand, Eric
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 3234 - 3241
  • [3] Autoencoder latent space: an empirical study
    Lapenda, Leticia V. N.
    Monteiro, Rodrigo P.
    Bastos-Filho, Carmelo J. A.
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 2453 - 2460
  • [4] Optimization of physical quantities in the autoencoder latent space
    S. M. Park
    H. G. Yoon
    D. B. Lee
    J. W. Choi
    H. Y. Kwon
    C. Won
    Scientific Reports, 12
  • [5] Autoencoder Image Interpolation by Shaping the Latent Space
    Oring, Alon
    Yakhini, Zohar
    Hel-Or, Yacov
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [6] Optimization of physical quantities in the autoencoder latent space
    Park, S. M.
    Yoon, H. G.
    Lee, D. B.
    Choi, J. W.
    Kwon, H. Y.
    Won, C.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [7] Variational Autoencoder with Learned Latent Structure
    Connor, Marissa
    Canal, Gregory
    Rozell, Christopher
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [8] Robust structure low-rank representation in latent space
    You, Cong-Zhe
    Palade, Vasile
    Wu, Xiao-Jun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2019, 77 : 117 - 124
  • [9] Towards latent space based manipulation of elastic rods using autoencoder models and robust centerline extractions
    Qi, Jiaming
    Ma, Guangfu
    Zhou, Peng
    Zhang, Haibo
    Lyu, Yueyong
    Navarro-Alarcon, David
    ADVANCED ROBOTICS, 2022, 36 (03) : 101 - 115
  • [10] Latent Space Expanded Variational Autoencoder for Sentence Generation
    Song, Tianbao
    Sun, Jingbo
    Chen, Bo
    Peng, Weiming
    Song, Jihua
    IEEE ACCESS, 2019, 7 : 144618 - 144627