3D printing of lithium osteogenic bioactive composite scaffold for enhanced bone regeneration

被引:41
|
作者
Wang, Wenzhao [1 ]
Wei, Jianlu [1 ]
Lei, Dong [7 ]
Wang, Suning [1 ]
Zhang, Boqing [5 ,6 ]
Shang, Shenghui [1 ]
Bai, Baoshuai [1 ]
Zhao, Chenxi [1 ]
Zhang, Wencan [1 ]
Zhou, Changchun [5 ,6 ]
Zhou, Hengxing [1 ,4 ]
Feng, Shiqing [1 ,2 ,3 ]
机构
[1] Shandong Univ, Shandong Univ Ctr Orthopaed, Qilu Hosp, Adv Med Res Inst,Dept Orthopaed,Cheeloo Coll Med, Jinan 250012, Shandong, Peoples R China
[2] Shandong Univ, Dept Orthopaed, Hosp 2, Cheeloo Coll Med, Jinan 250033, Shandong, Peoples R China
[3] Tianjin Med Univ Gen Hosp, Dept Orthopaed, Tianjin Key Lab Spine & Spinal Cord, Int Sci & Technol Cooperat Base Spinal Cord Injury, Tianjin 300052, Peoples R China
[4] Shandong Univ, Ctr Reprod Med, Jinan 250012, Shandong, Peoples R China
[5] Sichuan Univ, Natl Engn Res Ctr Biomat, Chengdu 610041, Sichuan, Peoples R China
[6] Sichuan Univ, Coll Biomed Engn, Chengdu 610041, Sichuan, Peoples R China
[7] Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 9, Sch Med, Shanghai Key Lab Tissue Engn, Shanghai 200011, Peoples R China
关键词
3D printing; Composited scaffold; Polylactic acid; Nano-hydroxyapatite; Bone repair; FABRICATION; BIOMATERIALS; ARCHITECTURE; ACTIVATION; DELIVERY; PATHWAY;
D O I
10.1016/j.compositesb.2023.110641
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The repair of large bone defects is still a challenge in clinical orthopedics. The combination of composite materials and 3D printing is expected to produce ideal bone defect scaffolds. This research studied the combined polylactic acid (PLA), nano-hydroxyapatite (n-HA), and lithium (Li) bone tissue scaffold via 3D printing. The nHA/PLA/Li composite scaffold was proposed by screening the optimal proportion, biocompatibility, and osteoinductive activity. The degradation and mechanical properties of the proposed specimens were evaluated. Osteogenesis and vasculogenesis were detected in vitro, and the regulatory pathways were explored to screen the doping amount of lithium ions. In vivo, the PLA/n-HA/Li composited scaffold was used for the beagle dog heterotopic and rabbit femur orthotopic osteogenesis studies. Results indicated that the mechanical strength of PLA/n-HA/Li composited scaffold decreased with the increase of the n-HA ratio. The 30% n-HA scaffold group showed a good comprehensive performance of printability and mechanical strength. Based on the osteoinductive activity, 0%, 0.5%, and 1% lithium-doped scaffolds were studied and screened. The 1% lithium group exhibited the best degradation, osteogenesis, and angiogenesis properties in vitro than other groups and could induce ectopic osteogenesis and in situ osteogenesis in vivo. This PLA/n-HA/Li composite biomaterial shows good printability, biocompatibility, degradability, and osteogenic inducibility, it has application potential in the personalized repair of large bone defects.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration
    Xiangjia Li
    Yuan Yuan
    Luyang Liu
    Yuen-Shan Leung
    Yiyu Chen
    Yuxing Guo
    Yang Chai
    Yong Chen
    Bio-Design and Manufacturing, 2020, 3 : 15 - 29
  • [22] Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration
    Torres, A. L.
    Gaspar, V. M.
    Serra, I. R.
    Diogo, G. S.
    Fradique, R.
    Silva, A. P.
    Correia, I. J.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2013, 33 (07): : 4460 - 4469
  • [23] Silkworm spinning inspired 3D printing toward a high strength scaffold for bone regeneration
    Yao, Yingkai
    Guan, Diqin
    Zhang, Chenke
    Liu, Jing
    Zhu, Xufeng
    Huang, Tingting
    Liu, Jie
    Cui, Hongjuan
    Tang, Kang-lai
    Lin, Jinxin
    Li, Fengyu
    JOURNAL OF MATERIALS CHEMISTRY B, 2022, 10 (36) : 6946 - 6957
  • [24] 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration
    Xiangjia Li
    Yuan Yuan
    Luyang Liu
    Yuen-Shan Leung
    Yiyu Chen
    Yuxing Guo
    Yang Chai
    Yong Chen
    Bio-Design and Manufacturing, 2020, (01) : 15 - 29
  • [25] 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration
    Li, Xiangjia
    Yuan, Yuan
    Liu, Luyang
    Leung, Yuen-Shan
    Chen, Yiyu
    Guo, Yuxing
    Chai, Yang
    Chen, Yong
    BIO-DESIGN AND MANUFACTURING, 2020, 3 (01) : 15 - 29
  • [26] MicroRNA-activated hydrogel scaffold generated by 3D printing accelerates bone regeneration
    Pan, Ting
    Song, Wenjing
    Xin, Hongbao
    Yu, Haiyue
    Wang, He
    Ma, Dandan
    Cao, Xiaodong
    Wang, Yingjun
    BIOACTIVE MATERIALS, 2022, 10 : 1 - 14
  • [27] 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration
    Xiangjia Li
    Yuan Yuan
    Luyang Liu
    YuenShan Leung
    Yiyu Chen
    Yuxing Guo
    Yang Chai
    Yong Chen
    Bio-Design and Manufacturing, 2020, 3 (01) : 15 - 29
  • [28] 3D printing of polycaprolactone/bioactive glass composite scaffolds for in situ bone repair
    Wang, Chenglong
    Meng, Chunyang
    Zhang, Zhuo
    Zhu, Qingsan
    CERAMICS INTERNATIONAL, 2022, 48 (06) : 7491 - 7499
  • [29] Pearl Powder Hybrid Bioactive Scaffolds from Microfluidic 3D Printing for Bone Regeneration
    Yang, Lei
    Fan, Lu
    Lin, Xiang
    Yu, Yunru
    Zhao, Yuanjin
    ADVANCED SCIENCE, 2023, 10 (34)
  • [30] Bone ECM-like 3D Printing Scaffold with Liquid Crystalline and Viscoelastic Microenvironment for Bone Regeneration
    Liu, Kun
    Li, Lin
    Chen, Jingsheng
    Li, Yizhi
    Wen, Wei
    Lu, Lu
    Li, Lihua
    Li, Hong
    Liu, Mingxian
    Zhou, Changren
    Luo, Binghong
    ACS NANO, 2022, : 21020 - 21035