BayesKGR: Bayesian Few-Shot Learning for Knowledge Graph Reasoning

被引:1
|
作者
Zhao, Feng [1 ,2 ]
Yan, Cheng [1 ,2 ]
Jin, Hai [1 ,2 ]
He, Lifang [3 ]
机构
[1] Natl Engn Res Ctr Big Data Technol & Syst, Serv Comp Technol & Syst Lab, Cluster & Grid Comp Lab, Wuhan, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan, Peoples R China
[3] Lehigh Univ, Dept Comp Sci & Engn, Bethlehem, PA USA
基金
中国国家自然科学基金;
关键词
Knowledge graph; few-shot learning; meta-learning; uncertainty;
D O I
10.1145/3589183
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reasoning over knowledge graphs (KGs) has received increasing attention recently due to its promising applications in many areas, such as semantic search and recommendation systems. Subsequently, most reasoning models are inherently transductive and ignore uncertainties of KGs, making it difficult to generalize to unseen entities. Moreover, existing approaches usually require each entity in the KG to have sufficient training samples, which leads to the overfitting of the entity having few instances. In fact, long-tail distributions are quite widespread in KGs, and newly emerging entities will tend to have only a few related triples. In this work, we aim at studying knowledge graph reasoning under a challenging setting where only limited training samples are available. Specifically, we propose a Bayesian inductive reasoning method and incorporate meta-learning techniques in few-shot learning to solve data deficiency and uncertainties. We design a Bayesian graph neural network as a meta-learner to achieve Bayesian inference, which can extrapolate meta-knowledge from observed KG to emerging entities. We conduct extensive experiments on two large-scale benchmark datasets, and the results demonstrate considerable performance improvement with the proposed approach over other baselines.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Fuzzy Graph Neural Network for Few-Shot Learning
    Wei, Tong
    Hou, Junlin
    Feng, Rui
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [32] Hierarchical Graph Neural Networks for Few-Shot Learning
    Chen, Cen
    Li, Kenli
    Wei, Wei
    Zhou, Joey Tianyi
    Zeng, Zeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (01) : 240 - 252
  • [33] Hybrid Graph Neural Networks for Few-Shot Learning
    Yu, Tianyuan
    He, Sen
    Song, Yi-Zhe
    Xiang, Tao
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 3179 - 3187
  • [34] Few-Shot Graph Learning for Molecular Property Prediction
    Guo, Zhichun
    Zhang, Chuxu
    Yu, Wenhao
    Herr, John
    Wiest, Olaf
    Jiang, Meng
    Chawla, Nitesh, V
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 2559 - 2567
  • [35] Graph Few-shot Class-incremental Learning
    Tan, Zhen
    Ding, Kaize
    Guo, Ruocheng
    Liu, Huan
    WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2022, : 987 - 996
  • [36] Graph Embedding Relation Network for Few-Shot Learning
    Liu, Zhen
    Xia, Yitong
    Zhang, Baochang
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7328 - 7334
  • [37] Complete feature learning and consistent relation modeling for few-shot knowledge graph completion
    Liu, Jin
    Fan, ChongFeng
    Zhou, Fengyu
    Xu, Huijuan
    Expert Systems with Applications, 2024, 238
  • [38] Relational multi-scale metric learning for few-shot knowledge graph completion
    Song, Yu
    Gui, Mingyu
    Zhang, Kunli
    Xu, Zexi
    Dai, Dongming
    Kong, Dezhi
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (07) : 4125 - 4150
  • [39] Complete feature learning and consistent relation modeling for few-shot knowledge graph completion
    Liu, Jin
    Fan, Chongfeng
    Zhou, Fengyu
    Xu, Huijuan
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [40] Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph Link Prediction
    Baek, Jinheon
    Lee, Dong Bok
    Hwang, Sung Ju
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33