A new in vitro chronic wound biofilm model was recently published, which provided a layered scaffold simulating mammalian tissue composition on which topical wound care products could be tested. In this paper, we updated the model even further to mimic the dynamic influx of nutrients from below as is the case in a chronic wound. The modified in vitro model was created using collagen instead of agar as the main matrix component and contained both Staphylococcus aureus and Pseudomonas aeruginosa. The model was cast in transwell inserts and then placed in wound simulating media, which allowed for an exchange of nutrients and waste products across a filter. Three potential wound care products and chlorhexidine digluconate 2% solution as a positive control were used to evaluate the model. The tested products were composed of hydrogels made from completely biodegradable starch microspheres carrying different active compounds. The compounds were applied topically and left for 2-4 days. Profiles of oxygen concentration and pH were measured to assess the effect of treatments on bacterial activity. Confocal microscope images were obtained of the models to visualise the existence of microcolonies. Results showed that the modified in vitro model maintained a stable number of the two bacterial species over 6 days. In untreated models, steep oxygen gradients developed and pH increased to >8.0. Hydrogels containing active compounds alleviated the high oxygen consumption and decreased pH drastically. Moreover, all three hydrogels reduced the colony forming units significantly and to a larger extent than the chlorhexidine control treatment. Overall, the modified model expressed several characteristics similar to in vivo chronic wounds.
机构:
Univ West England, Ctr Res Biosci, Bristol, EnglandUniv West England, Ctr Res Biosci, Bristol, England
Slade, Elisabeth A.
Thorn, Robin M. S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ West England, Ctr Res Biosci, Bristol, EnglandUniv West England, Ctr Res Biosci, Bristol, England
Thorn, Robin M. S.
Young, Amber
论文数: 0引用数: 0
h-index: 0
机构:
Bristol Royal Hosp Children, Scar Free Fdn Ctr Childrens Burns Res, Bristol, EnglandUniv West England, Ctr Res Biosci, Bristol, England
Young, Amber
Reynolds, Darren M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ West England, Ctr Res Biosci, Bristol, England
Univ West England, Frenchay Campus,Coldharbour Lane, Bristol BS16 1QY, Avon, EnglandUniv West England, Ctr Res Biosci, Bristol, England
机构:
Univ Kebangsaan Malaysia, Fac Pharm, Ctr Drug Delivery Res, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, MalaysiaUniv Kebangsaan Malaysia, Fac Pharm, Ctr Drug Delivery Res, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
Ng, Shiow-Fern
Leow, Hon-Lunn
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kebangsaan Malaysia, Fac Pharm, Ctr Drug Delivery Res, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, MalaysiaUniv Kebangsaan Malaysia, Fac Pharm, Ctr Drug Delivery Res, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia