Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems II: efficient algorithms and numerical results

被引:7
|
作者
Gilbert, Alexander D. [1 ]
Scheichl, Robert [2 ,3 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Heidelberg Univ, Inst Appl Math & Interdisciplinary Ctr Sci Comp, D-69120 Heidelberg, Germany
[3] Univ Bath, Dept Math Sci, Bath BA2 7AY, England
关键词
stochastic eigenvalue problems; quasi-Monte Carlo; uncertainty quantification; multilevel Monte Carlo; BY-COMPONENT CONSTRUCTION; RANK-1 LATTICE RULES; DISCRETIZATION; EQUATIONS;
D O I
10.1093/imanum/drad009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stochastic partial differential equation (PDE) eigenvalue problems (EVPs) often arise in the field of uncertainty quantification, whereby one seeks to quantify the uncertainty in an eigenvalue, or its eigenfunction. In this paper, we present an efficient multilevel quasi-Monte Carlo (MLQMC) algorithm for computing the expectation of the smallest eigenvalue of an elliptic EVP with stochastic coefficients. Each sample evaluation requires the solution of a PDE EVP, and so tackling this problem in practice is notoriously computationally difficult. We speed up the approximation of this expectation in four ways: we use a multilevel variance reduction scheme to spread the work over a hierarchy of FE meshes and truncation dimensions; we use QMC methods to efficiently compute the expectations on each level; we exploit the smoothness in parameter space and reuse the eigenvector from a nearby QMC point to reduce the number of iterations of the eigensolver; and we utilize a two-grid discretization scheme to obtain the eigenvalue on the fine mesh with a single linear solve. The full error analysis of a basic MLQMC algorithm is given in the companion paper (Gilbert, A. D. & Scheichl, R. (2023) Multilevel quasi-Monte Carlo methods for random elliptic eigenvalue problems I: regularity and analysis. IMA J. Numer. Anal.), and so, in this paper, we focus on how to further improve the efficiency and provide theoretical justification for using nearby QMC points and two-grid methods. Numerical results are presented that show the efficiency of our algorithm, and also show that the four strategies we employ are complementary.
引用
收藏
页码:504 / 535
页数:32
相关论文
共 50 条
  • [22] Quasi-Monte Carlo methods in numerical finance
    Joy, C
    Boyle, PP
    Tan, KS
    MANAGEMENT SCIENCE, 1996, 42 (06) : 926 - 938
  • [23] Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
    Graham, I. G.
    Kuo, F. Y.
    Nichols, J. A.
    Scheichl, R.
    Schwab, Ch.
    Sloan, I. H.
    NUMERISCHE MATHEMATIK, 2015, 131 (02) : 329 - 368
  • [24] Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
    I. G. Graham
    F. Y. Kuo
    J. A. Nichols
    R. Scheichl
    Ch. Schwab
    I. H. Sloan
    Numerische Mathematik, 2015, 131 : 329 - 368
  • [25] Are Quasi-Monte Carlo algorithms efficient for two-stage stochastic programs?
    Heitsch, H.
    Leoevey, H.
    Roemisch, W.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 65 (03) : 567 - 603
  • [26] Are Quasi-Monte Carlo algorithms efficient for two-stage stochastic programs?
    H. Heitsch
    H. Leövey
    W. Römisch
    Computational Optimization and Applications, 2016, 65 : 567 - 603
  • [27] QUASI-MONTE CARLO BAYESIAN ESTIMATION UNDER BESOV PRIORS IN ELLIPTIC INVERSE PROBLEMS
    Herrmann, Lukas
    Keller, Magdalena
    Schwab, Christoph
    MATHEMATICS OF COMPUTATION, 2021, 90 (330) : 1831 - 1860
  • [28] Convergence of sequential quasi-Monte Carlo smoothing algorithms
    Gerber, Mathieu
    Chopin, Nicolas
    BERNOULLI, 2017, 23 (4B) : 2951 - 2987
  • [29] On global sensitivity analysis of quasi-Monte Carlo algorithms
    Sobol, I. M.
    Kucherenko, S. S.
    MONTE CARLO METHODS AND APPLICATIONS, 2005, 11 (01): : 83 - 92
  • [30] Quasi-Monte Carlo Algorithms (Not Only) for Graphics Software
    Keller, Alexander
    Waechter, Carsten
    Binder, Nikolaus
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2022, 2024, 460 : 373 - 391