Probabilistic prediction of structural failure during 3D concrete printing processes

被引:2
|
作者
Diab, Zeinab [1 ]
Do, Duc-Phi [1 ]
Remond, Sebastien [1 ]
Hoxha, Dashnor [1 ]
机构
[1] Univ Tours, Univ Orleans, INSA CVL, Lame,EA 7494, F-45000 Orleans, France
关键词
3D concrete printing; Uncertainty effect; Reliability analysis; Plastic collapse; Elastic buckling; RELIABILITY-ANALYSIS; DESIGN; PERFORMANCE; STABILITY; BEHAVIOR; SUPPORT;
D O I
10.1617/s11527-023-02167-z
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Structural failure during 3D concrete printing (3DCP) process due to the competition of two mechanisms, the elastic buckling and plastic collapse, has been largely observed in the experiments. Prediction of this phenomena has become as consequence an important task of this innovative construction technique. Due to its strong dependence on various parameters such as the properties of fresh concrete, the geometry of the printed structure and the printing parameters, the accurate prediction of the structural response during 3DCP is challenging. Specifically, the significant evolution in time of mechanical properties as well as the heterogeneous characteristics in nature of concrete at early age make it difficult to be determined and result in high uncertainty. This fact may be a reason for the important gap between the predicted failure of 3DCP and real experiments as usually stated in the literature. To improve the prediction, the probabilistic analysis is conducted in this work, to account for the uncertainty effect of fresh concrete properties on the structure's response. For this purpose, the Kriging metamodeling technique is chosen to estimate the probability of two failure modes of concrete structure during printing. The applicability and effectiveness of this probabilistic analysis for the 3DCP is demonstrated through a large numerical investigation that is conducted with different structure geometries and printing strategies. The present study elucidates the significant impact of uncertainties on the structural behavior during 3DCP, which has been ignored in the literature.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Extrusion rheometer for 3D concrete printing
    Jayathilakage, Roshan
    Rajeev, Pathmanathan
    Sanjayan, Jay
    CEMENT & CONCRETE COMPOSITES, 2021, 121
  • [22] POTENTIALS AND CHALLENGES IN 3D CONCRETE PRINTING
    Salet, T. A. M.
    Wolfs, R. J. M.
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING (PRO-AM 2016), 2016, : 8 - 13
  • [23] 3D Concrete Printing for Sustainable Construction
    Kaszynska, Maria
    Skibicki, Szymon
    Hoffmann, Marcin
    ENERGIES, 2020, 13 (23)
  • [24] Sustainable materials for 3D concrete printing
    Bhattacherjee, Shantanu
    Basavaraj, Anusha S.
    Rahul, A. V.
    Santhanam, Manu
    Gettu, Ravindra
    Panda, Biranchi
    Schlangen, Erik
    Chen, Yu
    Copuroglu, Oguzhan
    Ma, Guowei
    Wang, Li
    Beigh, Mirza Abdul Basit
    Mechtcherine, Viktor
    CEMENT & CONCRETE COMPOSITES, 2021, 122
  • [25] Durability of 3D Printed Concrete: A Comparison of Extrusion 3D Printing, Shotcrete 3D Printing and Conventional Casting
    Boehler, David
    Mai, Inka
    Lowke, Dirk
    FOURTH RILEM INTERNATIONAL CONFERENCE ON CONCRETE AND DIGITAL FABRICATION, DC 2024, 2024, 53 : 283 - 290
  • [26] Developing an appropriate concrete mix for 3D concrete printing
    Rama Krishana A.K.
    Mallik M.
    Maity D.
    Journal of Building Pathology and Rehabilitation, 2024, 9 (2)
  • [27] Structural Evolution of PCL during Melt Extrusion 3D Printing
    Liu, Fengyuan
    Vyas, Cian
    Poologasundarampillai, Gowsihan
    Pape, Ian
    Hinduja, Sri
    Mirihanage, Wajira
    Bartolo, Paulo
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2018, 303 (02)
  • [28] Failure analysis of 3D concrete printing bolted laminates mimicking geological strata
    Feng, Xiaowei
    Du, Gaoming
    Carvelli, Valter
    Lin, Gongshun
    Pan, Dongjiang
    Huang, Peng
    Zhu, Chuankai
    ENGINEERING FAILURE ANALYSIS, 2024, 163
  • [29] Experimental realization on stress distribution monitoring during 3D concrete printing
    Duan, Zhenhua
    Deng, Qi
    Xiao, Jianzhuang
    Lv, Zhenyuan
    Hu, Binbin
    MATERIALS LETTERS, 2024, 358
  • [30] Concrete Printing in Architecture A research on the potential benefits of 3D Concrete Printing in Architecture
    Marijnissen, Marjolein P. A. M.
    van der Zee, Aant
    ECAADE 2017: SHARING OF COMPUTABLE KNOWLEDGE! (SHOCK!), VOL 2, 2017, : 299 - 308