Performance study of sodium alginate (SA) with lithium chloride (LiCl)-based solid-state membrane as an electrolyte in electrochemical device application

被引:4
|
作者
Hazaana, S. Aafrin [1 ,2 ]
Ancemma, Joseph [1 ]
Selvasekarapandian, S. [2 ,3 ]
Naachiyar, R. Meera [1 ,2 ]
Balasubramanian, G. [4 ]
Arunkumar, Dorai [5 ]
Nithya, Hellar [5 ]
Vignesh, N. Muniraj [2 ,6 ]
机构
[1] Madurai Kamaraj Univ, Fatima Coll, Res Ctr Phys, Madurai 625018, Tamil Nadu, India
[2] Mat Res Ctr, Coimbatore 641045, Tamil Nadu, India
[3] Bharathiar Univ, Dept Phys, Coimbatore 641046, Tamil Nadu, India
[4] IPGI Instruments, Chennai 600033, Tamil Nadu, India
[5] Tohoku Univ, Inst Multidisciplinary Res Adv Mat IMRAM, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[6] Madurai Kamaraj Univ, Mannar Thirumalai Naicker Coll, Res Ctr Phys, Madurai 625004, Tamil Nadu, India
关键词
Biopolymer; Sodium Alginate; Lithium Chloride; Li-ion conducting coin cell; Galvanostatic charge-discharge analysis; POLYMER ELECTROLYTES; IONIC-CONDUCTIVITY; PECTIN; ENERGY;
D O I
10.1007/s11581-023-05350-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this article, we present a novel solid biopolymer-based membrane (BPM) with sodium alginate (SA) as host material incorporated with an ionic salt, lithium chloride (LiCl). Solid BPMs are prepared using the solution casting technique and used as an electrolyte in the fabrication of solid-state Li-ion conducting battery and coin cell. The X-ray diffraction (XRD) method has been carried out to analyze the crystalline/amorphous nature of the membrane. A Fourier transform infrared spectroscopy (FTIR) study is done to confirm the complex formation between the host biopolymer and salt. The ionic conductivity of all prepared BPMs is measured using AC impedance analysis, and the membrane with the composition of 15 mol% of SA:85 mol% of LiCl exhibits a high ionic conductivity of 3.06 x 10-2 S/cm. The glass transition temperature (Tg) of the prepared BPMs is examined using differential scanning calorimetry (DSC), and the membrane of 15 mol% of SA:85 mol% of LiCl exhibits a decreased Tg value of 54.33 degrees C. The thermal stability of the prepared membranes is studied using thermogravimetric analysis (TGA). Transference number measurement (TNM) is made to assure that the major charge carriers involved in transportation are ions. Using the highest ion conducting membrane as an electrolyte, a primary Li-ion conducting battery has been fabricated which results in an OCV of 1.91 V, and various loads are connected to observe the corresponding current drawn from the cell. A coin cell is constructed with the configuration of graphite (G) + tannic acid || 15 mol% of SA:85 mol% of LiCl || LiFePO4 + G + pinch of highest ion conducting membrane, and the galvanostatic charge-discharge (GCD) analysis is carried out to analyze the rechargeable nature of the prepared membrane and the performance of the coin cell, whereas the cell has undergone charge/discharge process for 200 cycles and resulted with an energy density of 13.94 Wh/Kg, power density of 1111.11 W/Kg, and specific capacitance of 100.40 F/g, respectively.
引用
收藏
页码:1413 / 1435
页数:23
相关论文
共 50 条
  • [11] Tuning composite solid-state electrolyte interface to improve the electrochemical performance of lithium-oxygen battery
    Hao Ouyang
    Shan Min
    Jin Yi
    Xiaoyu Liu
    Fanghua Ning
    Jiaqian Qin
    Yong Jiang
    Bing Zhao
    Jiujun Zhang
    Green Energy & Environment, 2023, 8 (04) : 1195 - 1204
  • [12] ELECTROCHEMICAL STUDIES ON SINGLE-CRYSTALLINE CUPROUS CHLORIDE AS A SOLID-STATE ELECTROLYTE
    JOSHI, AV
    WAGNER, JB
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1972, 119 (03) : C111 - &
  • [13] Tuning composite solid-state electrolyte interface to improve the electrochemical performance of lithium-oxygen battery
    Ouyang, Hao
    Min, Shan
    Yi, Jin
    Liu, Xiaoyu
    Ning, Fanghua
    Qin, Jiaqian
    Jiang, Yong
    Zhao, Bing
    Zhang, Jiujun
    GREEN ENERGY & ENVIRONMENT, 2023, 8 (04) : 1195 - 1204
  • [14] Performance of solid-state Li-ion conducting battery using biopolymer electrolyte based on agar–agar/lithium chloride
    S. Aafrin Hazaana
    Ancemma Joseph
    S. Selvasekarapandian
    R. Meera Naachiyar
    N. Muniraj Vignesh
    Journal of Solid State Electrochemistry, 2023, 27 : 539 - 557
  • [15] High-Humidity-Tolerant Chloride Solid-State Electrolyte for All-Solid-State Lithium Batteries
    Wang, Kai
    Gu, Zhenqi
    Liu, Haoxuan
    Hu, Lv
    Wu, Ying
    Xu, Jie
    Ma, Cheng
    ADVANCED SCIENCE, 2024, 11 (14)
  • [16] Fabrication and electrochemical behavior of flexible composite solid electrolyte for bipolar solid-state lithium batteries
    Song, Young-Woong
    Park, Sang-Jun
    Kim, Min-Young
    Kang, Byeong-Su
    Hong, Youngsun
    Kim, Woo Joong
    Han, Jong-Hun
    Lim, Jinsub
    Kim, Ho-Sung
    JOURNAL OF POWER SOURCES, 2022, 542
  • [17] Insight into the integration way of ceramic solid-state electrolyte fillers in the composite electrolyte for high performance solid-state lithium metal battery
    Ren, Zhiheng
    Li, Jixiao
    Gong, Yangyang
    Shi, Chuan
    Liang, Jianneng
    Li, Yongliang
    He, Chuanxin
    Zhang, Qianling
    Ren, Xiangzhong
    ENERGY STORAGE MATERIALS, 2022, 51 : 130 - 138
  • [18] Electrochemical preparation of standard gas mixtures using solid-state electrolyte membrane
    Kolotygin, V. A.
    Ivanov, A. I.
    Noskova, V. A.
    Kostretsova, N. B.
    JOURNAL OF CHROMATOGRAPHY A, 2019, 1590 : 121 - 129
  • [19] Structural insight and modulating of sulfide-based solid-state electrolyte for high-performance solid-state sodium sulfur batteries
    Dong, Zhi Liang
    Yuan, Yi
    Martins, Vinicius
    Jin, Enzhong
    Gan, Yi
    Lin, Xiaoting
    Gao, Yingjie
    Hao, Xiaoge
    Guan, Yi
    Fu, Jiamin
    Pang, Xin
    Huang, Yining
    Tu, Qingsong Howard
    Sham, Tsun-Kong
    Zhao, Yang
    NANO ENERGY, 2024, 128
  • [20] A High-Performance Self-Reinforced PEO-Based Blend Solid Electrolyte Membrane for Solid-State Lithium Ion Batteries
    Li, Chengbin
    Yue, Hongyun
    Wang, Qiuxian
    Yang, Shuting
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2022, 58 (04) : 271 - 283