Using Graph Neural Networks for Social Recommendations

被引:0
|
作者
Tallapally, Dharahas [1 ]
Wang, John [2 ]
Potika, Katerina [1 ]
Eirinaki, Magdalini [2 ]
机构
[1] San Jose State Univ, Dept Comp Sci, San Jose, CA 95192 USA
[2] San Jose State Univ, Dept Comp Engn, San Jose, CA 95192 USA
关键词
social recommendation algorithm; graph neural networks; recommender systems; social network; influence diffusion;
D O I
10.3390/a16110515
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recommender systems have revolutionized the way users discover and engage with content. Moving beyond the collaborative filtering approach, most modern recommender systems leverage additional sources of information, such as context and social network data. Such data can be modeled using graphs, and the recent advances in Graph Neural Networks have led to the prominence of a new family of graph-based recommender system algorithms. In this work, we propose the RelationalNet algorithm, which not only models user-item, and user-user relationships but also item-item relationships with graphs and uses them as input to the recommendation process. The rationale for utilizing item-item interactions is to enrich the item embeddings by leveraging the similarities between items. By using Graph Neural Networks (GNNs), RelationalNet incorporates social influence and similar item influence into the recommendation process and captures more accurate user interests, especially when traditional methods fall short due to data sparsity. Such models improve the accuracy and effectiveness of recommendation systems by leveraging social connections and item interactions. Results demonstrate that RelationalNet outperforms current state-of-the-art social recommendation algorithms.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Process Discovery Using Graph Neural Networks
    Sommers, Dominique
    Menkovski, Vlado
    Fahland, Dirk
    2021 3RD INTERNATIONAL CONFERENCE ON PROCESS MINING (ICPM 2021), 2021, : 40 - 47
  • [42] Neural Graph Learning: Training Neural Networks Using Graphs
    Bui, Thang D.
    Ravi, Sujith
    Ramavajjala, Vivek
    WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2018, : 64 - 71
  • [43] Personalized Event Recommendations using Social Networks
    Boutsis, Ioannis
    Karanikolaou, Stavroula
    Kalogeraki, Vana
    2015 16TH IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT, VOL 1, 2015, : 84 - 93
  • [44] Reconstruction of gene regulatory networks using graph neural networks
    Paul, M. Emma
    Jereesh, A. S.
    Kumar, G. Santhosh
    APPLIED SOFT COMPUTING, 2024, 163
  • [45] BernGraph: Probabilistic Graph Neural Networks for EHR-based Medication Recommendations
    Piao, Xihao
    Gao, Pei
    Chen, Zheng
    Zhu, Lingwei
    Matsubara, Yasuko
    Sakurai, Yasushi
    Sun, Jimeng
    arXiv,
  • [46] Combining Graph Neural Networks and Sentence Encoders for Knowledge-aware Recommendations
    Spillo, Giuseppe
    Musto, Cataldo
    Polignano, Marco
    Lops, Pasquale
    de Gemmis, Marco
    Semeraro, Giovanni
    2023 PROCEEDINGS OF THE 31ST ACM CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION, UMAP 2023, 2023, : 1 - 12
  • [47] Sequential Dependency Enhanced Graph Neural Networks for Session-based Recommendations
    Guo, Wei
    Wang, Shoujin
    Lu, Wenpeng
    Wu, Hao
    Zhang, Qian
    Shao, Zhufeng
    2021 IEEE 8TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2021,
  • [48] MutualRec: Joint friend and item recommendations with mutualistic attentional graph neural networks
    Xiao, Yang
    Pei, Qingqi
    Xiao, Tingting
    Yao, Lina
    Liu, Huan
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2021, 177
  • [49] Popularity Prediction on Social Platforms with Coupled Graph Neural Networks
    Cao, Qi
    Shen, Huawei
    Gao, Hnhua
    Wei, Bingzheng
    Cheng, Xuegi
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), 2020, : 70 - 78
  • [50] Social Robot Detection Method with Improved Graph Neural Networks
    Yu, Zhenhua
    Bai, Liangxue
    Ye, Ou
    Cong, Xuya
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 78 (02): : 1773 - 1795