Multi-Agent Task Assignment in Vehicular Edge Computing: A Regret-Matching Learning-Based Approach

被引:3
|
作者
Nguyen, Bach Long [1 ]
Nguyen, Duong D. [2 ]
Nguyen, Hung X. [2 ]
Ngo, Duy T. [3 ]
Wagner, Markus [1 ]
机构
[1] Monash Univ, Dept Data Sci & AI, Clayton, Vic 3800, Australia
[2] Univ Adelaide, Sch Comp Sci, Adelaide, SA 5005, Australia
[3] Univ Newcastle, Sch Engn, Callaghan, NSW 2308, Australia
基金
澳大利亚研究理事会;
关键词
Correlated equilibrium; intelligent transportation systems; multi-agent learning; regret matching; task assignment; vehicular edge computing; REINFORCEMENT; EQUILIBRIUM; COMPLEXITY; MIGRATION; VEHICLES;
D O I
10.1109/TETCI.2023.3339540
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vehicular edge computing has emerged as a solution for enabling computation-intensive applications within Intelligent Transportation Systems (ITS), encompassing domains like autonomous driving and augmented reality. Despite notable progress in this domain, the efficient allocation of constrained computational resources to a spectrum of time-critical ITS tasks remains a substantial challenge. We address this challenge by devising an innovative task assignment scheme tailored for vehicles navigating a highway. Given the high speed of vehicles and the limited communication radius of roadside units (RSUs), the dynamic migration of computation tasks among multiple servers becomes imperative. We present a novel approach that formulates the task assignment challenge as a binary nonlinear programming (BNLP) problem, managing the allocation of computation tasks from vehicles to RSUs and a macrocell base station. To tackle the potentially large dimensionality of this optimization problem, we develop a distributed multi-agent regret-matching learning algorithm. Incorporating the method of regret minimization, our proposed algorithm employs a forgetting mechanism that enables a continuous learning process, thereby accommodating the high mobility of vehicle networks. We prove that this algorithm converges towards correlated equilibrium solutions for our BNLP formulation. Extensive simulations, grounded in practical parameter settings, underscore the algorithm's ability to minimize total delay and task processing costs, while ensuring equitable utility distribution among agents.
引用
收藏
页码:1527 / 1539
页数:13
相关论文
共 50 条
  • [21] Optimization of Task Offloading Strategy for Mobile Edge Computing Based on Multi-Agent Deep Reinforcement Learning
    Lu, Haifeng
    Gu, Chunhua
    Luo, Fei
    Ding, Weichao
    Zheng, Shuai
    Shen, Yifan
    IEEE ACCESS, 2020, 8 : 202573 - 202584
  • [22] A Task Offloading and Resource Allocation Strategy Based on Multi-Agent Reinforcement Learning in Mobile Edge Computing
    Jiang, Guiwen
    Huang, Rongxi
    Bao, Zhiming
    Wang, Gaocai
    FUTURE INTERNET, 2024, 16 (09)
  • [23] A Delay-Optimal Task Scheduling Strategy for Vehicle Edge Computing Based on the Multi-Agent Deep Reinforcement Learning Approach
    Nie, Xuefang
    Yan, Yunhui
    Zhou, Tianqing
    Chen, Xingbang
    Zhang, Dingding
    ELECTRONICS, 2023, 12 (07)
  • [24] Joint Secure Offloading and Resource Allocation for Vehicular Edge Computing Network: A Multi-Agent Deep Reinforcement Learning Approach
    Ju, Ying
    Chen, Yuchao
    Cao, Zhiwei
    Liu, Lei
    Pei, Qingqi
    Xiao, Ming
    Ota, Kaoru
    Dong, Mianxiong
    Leung, Victor C. M.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (05) : 5555 - 5569
  • [25] Multi-Agent Deep Reinforcement Learning-Based Computation Offloading in LEO Satellite Edge Computing System
    Wu, Jian
    Jia, Min
    Zhang, Ningtao
    Guo, Qing
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (10) : 2352 - 2356
  • [26] Multi-Agent Reinforcement Learning for Cooperative Task Offloading in Distributed Edge Cloud Computing
    Ding, Shiyao
    Lin, Donghui
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (05) : 936 - 945
  • [27] Multi-Agent Deep Reinforcement Learning-Based Interdependent Computing for Mobile Edge Computing-Assisted Robot Teams
    Cui, Qimei
    Zhao, Xiyu
    Ni, Wei
    Hu, Zheng
    Tao, Xiaofeng
    Zhang, Ping
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (05) : 6599 - 6610
  • [28] Multi-Agent Deep Reinforcement Learning-Based Trajectory Planning for Multi-UAV Assisted Mobile Edge Computing
    Wang, Liang
    Wang, Kezhi
    Pan, Cunhua
    Xu, Wei
    Aslam, Nauman
    Hanzo, Lajos
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (01) : 73 - 84
  • [29] Task Migration Based on Reinforcement Learning in Vehicular Edge Computing
    Moon, Sungwon
    Park, Jaesung
    Lim, Yujin
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
  • [30] Deep reinforcement learning approach for multi-hop task offloading in vehicular edge computing
    Ahmed, Manzoor
    Raza, Salman
    Ahmad, Haseeb
    Khan, Wali Ullah
    Xu, Fang
    Rabie, Khaled
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2024, 59