Orientational Growth of Flexible van der Waals Supramolecular Networks

被引:2
|
作者
Ding, Haoxuan [1 ]
Zhang, Xin [2 ]
Li, Bosheng [1 ]
Wang, Yitao [3 ]
Xia, Chunqiu [1 ]
Zhao, Haoyu [1 ]
Yang, Hualin [1 ]
Gao, Ying [1 ]
Chen, Xiaorui [4 ]
Gao, Jianzhi [2 ]
Pan, Minghu [2 ]
Guo, Quanmin [1 ]
机构
[1] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, England
[2] Shaanxi Normal Univ, Sch Phys & Informat Technol, Xian 710119, Peoples R China
[3] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
[4] Xian Univ, Sch Mech & Mat Engn, Xian 710065, Peoples R China
来源
SMALL STRUCTURES | 2024年 / 5卷 / 01期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
decanethiol; fullerenes; scanning tunneling microscopy; self-assembly; supramolecular frameworks; van der Waals; COMPLEX STRUCTURE; C-60; FULLERENE; 2D; MOLECULES; AU(111); LAYER; HETEROJUNCTIONS; PHTHALOCYANINES; CHEMISTRY;
D O I
10.1002/sstr.202300230
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The capacity for nanopatterning and functionality is a promising facet of supramolecular self-assembly. However, the formation of molecular frameworks entirely dependent on van der Waals (vdW) interactions is infrequently explored. Herein, 2D vdW supramolecular structures are synthesized through the self-assembled cocrystallization of C60 and decanethiol (DT) molecules on Au(111) surface. Notably, the system eliminates the need of functional groups for specific bonding between adjacent units. The conformation C60/DT is delicately manipulated by adjusting molecular coverage and annealing temperature. The absence of directional bonding between C60 and DT molecules facilitates the formation of a variety of stable phases at room temperature (RT), such as 1) porous C60 networks with thiol-filled pores and 2) self-synthesized (C60)n nanochains with thiol spacers interspersed between the chains are achieved and visualized by scanning tunneling microscopic imaging under RT. This innovative integration of the vdW interaction unveils new avenues for developing supramolecular patterns characterized by their comparatively weak but exceptionally adaptable bonding. A bicomponent coassembled 2D structure on Au(111) controlled by collective van der Waals (vdW) interactions is explored by scanning tunneling microscopy. The 2D vdW supramolecular structures are synthesized through the self-assembled cocrystallization of C60 and decanethiol molecules on Au(111) surface at room temperature.image (c) 2023 WILEY-VCH GmbH
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Van der Waals rectifiers
    Steven L. Bernasek
    Nature Nanotechnology, 2013, 8 : 80 - 81
  • [32] The van der Waals interaction
    Holstein, BR
    AMERICAN JOURNAL OF PHYSICS, 2001, 69 (04) : 441 - 449
  • [33] Van der Waals' elastica
    Mockensturm, Eric
    Mahdavi, Arash
    Proceedings of the ASME Applied Mechanics Division, 2005, 256 : 277 - 291
  • [34] VAN DER WAALS CONSTANTS
    AHLBERG, R
    GOSCINSKI, O
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1974, 7 (10) : 1194 - 1203
  • [35] On a theorem of van der Waals
    Saurel, P
    JOURNAL OF PHYSICAL CHEMISTRY, 1901, 5 (02): : 137 - 140
  • [36] Van der Waals forces
    Margenau, H
    REVIEWS OF MODERN PHYSICS, 1939, 11 (01) : 0001 - 0035
  • [37] Van der Waals superlattices
    Ren, Huaying
    Wan, Zhong
    Duan, Xiangfeng
    NATIONAL SCIENCE REVIEW, 2022, 9 (05)
  • [38] Van der Waals Electrides
    Zhou, Jun
    You, Jing-Yang
    Zhao, Yi-Ming
    Feng, Yuan Ping
    Shen, Lei
    ACCOUNTS OF CHEMICAL RESEARCH, 2024, 57 (17) : 2572 - 2581
  • [39] van der Waals metamaterials
    Dorrell, William
    Pirie, Harris
    Gardezi, S. Minhal
    Drucker, Nathan C.
    Hoffman, Jennifer E.
    PHYSICAL REVIEW B, 2020, 101 (12)
  • [40] van der Waals revisited
    Baerwinkel, Klaus
    Schnack, Juergen
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (18) : 4581 - 4588