Conditional Temporal Variational AutoEncoder for Action Video Prediction

被引:2
|
作者
Xu, Xiaogang [1 ]
Wang, Yi [2 ]
Wang, Liwei [3 ]
Yu, Bei [3 ]
Jia, Jiaya [3 ]
机构
[1] Zhejiang Lab, Hangzhou, Zhejiang, Peoples R China
[2] Shanghai AI Lab, Shanghai, Peoples R China
[3] Chinese Univ Hong Kong, Hong Kong, Peoples R China
关键词
Variational AutoEncoder; Action modeling; Temporal coherence; Adversarial learning;
D O I
10.1007/s11263-023-01832-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To synthesize a realistic action sequence based on a single human image, it is crucial to model both motion patterns and diversity in the action video. This paper proposes an Action Conditional Temporal Variational AutoEncoder (ACT-VAE) to improve motion prediction accuracy and capture movement diversity. ACT-VAE predicts pose sequences for an action clip from a single input image. It is implemented as a deep generative model that maintains temporal coherence according to the action category with a novel temporal modeling on latent space. Further, ACT-VAE is a general action sequence prediction framework. When connected with a plug-and-play Pose-to-Image network, ACT-VAE can synthesize image sequences. Extensive experiments bear out our approach can predict accurate pose and synthesize realistic image sequences, surpassing state-of-the-art approaches. Compared to existing methods, ACT-VAE improves model accuracy and preserves diversity.
引用
收藏
页码:2699 / 2722
页数:24
相关论文
共 50 条
  • [21] Driving Style-Based Conditional Variational Autoencoder for Prediction of Ego Vehicle Trajectory
    Kim, Dongchan
    Shon, Hyukju
    Kweon, Nahyun
    Choi, Seungwon
    Yang, Chanuk
    Huh, Kunsoo
    IEEE ACCESS, 2021, 9 : 169348 - 169356
  • [22] Video Colorization Based on Variational Autoencoder
    Zhang, Guangzi
    Hong, Xiaolin
    Liu, Yan
    Qian, Yulin
    Cai, Xingquan
    ELECTRONICS, 2024, 13 (12)
  • [23] Human Action Recognition Based on a Spatio-Temporal Video Autoencoder
    Sousa e Santos, Anderson Carlos
    Pedrini, Helio
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 34 (11)
  • [24] Stochastic inversion of geophysical data by a conditional variational autoencoder
    McAliley, Wallace Anderson
    Li, Yaoguo
    GEOPHYSICS, 2024, 89 (01) : WA219 - WA232
  • [25] Improving Fault Localization Using Conditional Variational Autoencoder
    Fang, Xianmei
    Gao, Xiaobo
    Wang, Yuting
    Liao, Zhouyu
    Ma, Yue
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (08) : 1490 - 1494
  • [26] HiCoVA: Hierarchical Conditional Variational Autoencoder for Keyphrase Generation
    Santosh, T. Y. S. S.
    Reddy, Nikhil, V
    Anoop, V
    Sanyal, Debarshi Kumar
    Das, Partha Pratim
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3448 - 3452
  • [27] Recommending Changes on QoE Factors with Conditional Variational AutoEncoder
    Ickin, Selim
    PROCEEDINGS OF THE 4TH FLEXNETS WORKSHOP ON FLEXIBLE NETWORKS, ARTIFICIAL INTELLIGENCE SUPPORTED NETWORK FLEXIBILITY AND AGILITY (FLEXNETS'21), 2021, : 20 - 25
  • [28] Asset Pricing via the Conditional Quantile Variational Autoencoder
    Yang, Xuanling
    Zhu, Zhoufan
    Li, Dong
    Zhu, Ke
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (02) : 681 - 694
  • [29] Conditional Variational Graph Autoencoder for Air Quality Forecasting
    Bonet, Esther Rodrigo
    Tien Huu Do
    Qin, Xuening
    Hofman, Jelle
    La Manna, Valerio Panzica
    Philips, Wilfried
    Deligiannis, Nikos
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1442 - 1446
  • [30] Emotional Response Generation using Conditional Variational Autoencoder
    Lee, Young-Jun
    Choi, Ho-Jin
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 553 - 554