Conditional Temporal Variational AutoEncoder for Action Video Prediction

被引:2
|
作者
Xu, Xiaogang [1 ]
Wang, Yi [2 ]
Wang, Liwei [3 ]
Yu, Bei [3 ]
Jia, Jiaya [3 ]
机构
[1] Zhejiang Lab, Hangzhou, Zhejiang, Peoples R China
[2] Shanghai AI Lab, Shanghai, Peoples R China
[3] Chinese Univ Hong Kong, Hong Kong, Peoples R China
关键词
Variational AutoEncoder; Action modeling; Temporal coherence; Adversarial learning;
D O I
10.1007/s11263-023-01832-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To synthesize a realistic action sequence based on a single human image, it is crucial to model both motion patterns and diversity in the action video. This paper proposes an Action Conditional Temporal Variational AutoEncoder (ACT-VAE) to improve motion prediction accuracy and capture movement diversity. ACT-VAE predicts pose sequences for an action clip from a single input image. It is implemented as a deep generative model that maintains temporal coherence according to the action category with a novel temporal modeling on latent space. Further, ACT-VAE is a general action sequence prediction framework. When connected with a plug-and-play Pose-to-Image network, ACT-VAE can synthesize image sequences. Extensive experiments bear out our approach can predict accurate pose and synthesize realistic image sequences, surpassing state-of-the-art approaches. Compared to existing methods, ACT-VAE improves model accuracy and preserves diversity.
引用
收藏
页码:2699 / 2722
页数:24
相关论文
共 50 条
  • [1] Conditional Temporal Variational AutoEncoder for Action Video Prediction
    Xiaogang Xu
    Yi Wang
    Liwei Wang
    Bei Yu
    Jiaya Jia
    International Journal of Computer Vision, 2023, 131 : 2699 - 2722
  • [2] Trajectory Prediction with a Conditional Variational Autoencoder
    Barbie, Thibault
    Nishio, Takaki
    Nishida, Takeshi
    JOURNAL OF ROBOTICS AND MECHATRONICS, 2019, 31 (03) : 493 - 499
  • [3] Conditional Variational Autoencoder Networks for Autonomous Vehicle Path Prediction
    D. N. Jagadish
    Arun Chauhan
    Lakshman Mahto
    Neural Processing Letters, 2022, 54 : 3965 - 3978
  • [4] Degradation Prediction of Semiconductor Lasers Using Conditional Variational Autoencoder
    Abdelli, Khouloud
    Griesser, Helmut
    Neumeyr, Christian
    Hohenleitner, Robert
    Pachnicke, Stephan
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (18) : 6213 - 6221
  • [5] Conditional Variational Autoencoder Networks for Autonomous Vehicle Path Prediction
    Jagadish, D. N.
    Chauhan, Arun
    Mahto, Lakshman
    NEURAL PROCESSING LETTERS, 2022, 54 (05) : 3965 - 3978
  • [6] MoCVAE: Movement Prediction by A Conditional Variational Autoencoder for Doubles Badminton
    Sung, Pei-Chieh
    Lai, Hsu-Chao
    Jhang, Guan-Yi
    Ik, Tsi-Ui
    Wang, Chih-Chuan
    Huang, Jiun-Long
    2024 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING, IEEE BIGCOMP 2024, 2024, : 40 - 47
  • [7] A Variational Graph Autoencoder for Manipulation Action Recognition and Prediction
    Akyol, Gamze
    Sariel, Sanem
    Aksoy, Eren Erdal
    2021 20TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS (ICAR), 2021, : 968 - 973
  • [8] A Hybrid Model for QoS Prediction based on Improved Conditional Variational Autoencoder
    Wu, Mengwei
    Lu, Qin
    Wang, Yingxue
    Wang, Yichao
    Chen, Huanyu
    Li, Weixiao
    2022 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING, ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM, 2022, : 339 - 346
  • [9] Autonomous Vehicle Path Prediction Using Conditional Variational Autoencoder Networks
    Jagadish, D. N.
    Chauhan, Arun
    Mahto, Lakshman
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT I, 2021, 12712 : 129 - 139
  • [10] Intra Frame Prediction for Video Coding Using a Conditional Autoencoder Approach
    Brand, Fabian
    Seiler, Juergen
    Kaup, Andre
    2019 PICTURE CODING SYMPOSIUM (PCS), 2019,