EXISTENCE, UNIQUENESS AND STABILITY RESULTS FOR FRACTIONAL NONLINEAR VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

被引:0
|
作者
Hamoud, A. [1 ]
Osman, M. [2 ]
机构
[1] Taiz Univ, Dept Math, Taizi 380015, Yemen
[2] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
关键词
Fractional Volterra-Fredholm integro-differential equation; Caputo sense; Generalized Ulam stability; Fixed point method;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish some new conditions for the existence and unique-ness of solutions for a class of nonlinear Caputo fractional Volterra-Fredholm integro-differential equations with integral boundary conditions. The desired results are proved by using Banach and Krasnoselskii's fixed point theorems. In addition, the Ulam-Hyers stability and Ulam-Hyers-Rassias stability for solutions of the given problem are also discussed. An example is presented to guarantee the validity of our results.
引用
收藏
页码:491 / 506
页数:16
相关论文
共 50 条
  • [21] SOME NEW RESULTS ON NONLINEAR FRACTIONAL ITERATIVE VOLTERRA-FREDHOLM INTEGRO DIFFERENTIAL EQUATIONS
    Hamoud, A. A.
    Ghadle, K. P.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (04): : 1283 - 1294
  • [22] A Nonlinear Fractional Problem with Mixed Volterra-Fredholm Integro-Differential Equation: Existence, Uniqueness, H-U-R Stability, and Regularity of Solutions
    Khaldi, Somia
    Mecheraoui, Rachid
    Mukheimer, Aiman
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [23] On the Hilfer Fractional Volterra-Fredholm Integro Differential Equations
    Ivaz, Karim
    Alasadi, Ismael
    Hamoud, Ahmed
    IAENG International Journal of Applied Mathematics, 2022, 52 (02)
  • [24] ANALYSIS OF A NONLINEAR VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATION
    Aissaoui, M. Z.
    Bounaya, M. C.
    Guebbai, H.
    QUAESTIONES MATHEMATICAE, 2022, 45 (02) : 307 - 325
  • [25] On a New Class of Impulsive η-Hilfer Fractional Volterra-Fredholm Integro-Differential Equations
    Ismaael, F. M.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (04): : 691 - 704
  • [26] Solving Fractional Volterra-Fredholm Integro-Differential Equations via A** Iteration Method
    Ofem, Austine Efut
    Hussain, Aftab
    Joseph, Oboyi
    Udo, Mfon Okon
    Ishtiaq, Umar
    Al Sulami, Hamed
    Chikwe, Chukwuka Fernando
    AXIOMS, 2022, 11 (09)
  • [27] Application of artificial neural networks for existence and controllability in impulsive fractional Volterra-Fredholm integro-differential equations
    Raghavendran, Prabakaran
    Gunasekar, Tharmalingam
    Gochhait, Saikat
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2024, 32 (01):
  • [28] On the nonlinear impulsive Volterra-Fredholm integro differential equations
    Shikhare, Pallavi U.
    Kucche, Kishor D.
    Sousa, J. Vanterler da C.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 523 - 537
  • [29] A New Numerical Method to Solve Nonlinear Volterra-Fredholm Integro-Differential Equations
    Hou, Jinjiao
    Niu, Jing
    Xu, Minqiang
    Ngolo, Welreach
    MATHEMATICAL MODELLING AND ANALYSIS, 2021, 26 (03) : 469 - 478
  • [30] A numerical approach for solving nonlinear fractional Volterra-Fredholm integro-differential equations with mixed boundary conditions
    Sahu, P. K.
    Ray, S. Saha
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2016, 14 (05)