Metrics of constant negative scalar-Weyl curvature

被引:0
|
作者
Catino, Giovanni [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Piazza Leonardo Da Vinci 32, I-20133 Milan, Italy
关键词
MANIFOLDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Extending Aubin's construction of metrics with constant negative scalar curvature, we prove that every n-dimensional closed manifold admits a Riemannian metric with constant negative scalarWeyl curvature, that is R + t|W|, t is an element of R. In particular, there are no topological obstructions for metrics with epsilon-pinched Weyl curvature and negative scalar curvature.
引用
收藏
页码:319 / 340
页数:22
相关论文
共 50 条