TFix: Exploiting the Natural Redundancy of Ternary Neural Networks for Fault Tolerant In-Memory Vector Matrix Multiplication

被引:1
|
作者
Malhotra, Akul [1 ]
Wang, Chunguang [1 ]
Gupta, Sumeet Kumar [1 ]
机构
[1] Purdue Univ, W Lafayette, IN 47907 USA
关键词
In-Memory Computing; Vector Matrix Multiplication; Ternary Deep Neural Networks; Fault Tolerance;
D O I
10.1109/DAC56929.2023.10247835
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In-memory computing (IMC) and quantization have emerged as promising techniques for edge-based deep neural network (DNN) accelerators by reducing their energy, latency and storage requirements. In pursuit of ultra-low precision, ternary precision DNNs (TDNNs) offer high efficiency without sacrificing much inference accuracy. In this work, we explore the impact of hard faults on IMC based TDNNs and propose TFix to enhance their fault tolerance. TFix exploits the natural redundancy present in most ternary IMC bitcells as well as the high weight sparsity in TDNNs to provide up to 40.68% accuracy increase over the baseline with < 6% energy overhead.
引用
收藏
页数:6
相关论文
共 38 条
  • [11] TiM-DNN: Ternary In-Memory Accelerator for Deep Neural Networks
    Jain, Shubham
    Gupta, Sumeet Kumar
    Raghunathan, Anand
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2020, 28 (07) : 1567 - 1577
  • [12] Fault tolerant training of neural networks for learning vector quantization
    Minohara, Takashi
    NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 786 - 795
  • [13] Bipolar Vector Classifier for Fault-tolerant Deep Neural Networks
    Lee, Suyong
    Choi, Insu
    Yang, Joon-Sung
    PROCEEDINGS OF THE 59TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, DAC 2022, 2022, : 673 - 678
  • [14] Programming Weights to Analog In-Memory Computing Cores by Direct Minimization of the Matrix-Vector Multiplication Error
    Buechel, Julian
    Vasilopoulos, Athanasios
    Kersting, Benedikt
    Lammie, Corey
    Brew, Kevin
    Philip, Timothy
    Saulnier, Nicole
    Narayanan, Vijay
    Le Gallo, Manuel
    Sebastian, Abu
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2023, 13 (04) : 1052 - 1061
  • [15] Experimental Assessment of Multilevel RRAM-Based Vector-Matrix Multiplication Operations for In-Memory Computing
    Quesada, Emilio Perez-Bosch
    Mahadevaiah, Mamathamba Kalishettyhalli
    Rizzi, Tommaso
    Wen, Jianan
    Ulbricht, Markus
    Krstic, Milos
    Wenger, Christian
    Perez, Eduardo
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (04) : 2009 - 2014
  • [16] Iterative Sparse Matrix-Vector Multiplication on In-Memory Cluster Computing Accelerated by GPUs for Big Data
    Peng, Jiwu
    Xiao, Zheng
    Chen, Cen
    Yang, Wangdong
    2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 1454 - 1460
  • [17] Mapping matrix-vector multiplication algorithm onto fault-tolerant unidirectional systolic array
    Milovanovic, EI
    Stojanovic, NM
    Milovanovic, IZ
    TELSIKS 2005, PROCEEDINGS, VOLS 1 AND 2, 2005, : 65 - 68
  • [18] XNOR-SRAM: In-Memory Computing SRAM Macro for Binary/Ternary Deep Neural Networks
    Jiang, Zhewei
    Yin, Shihui
    Seok, Mingoo
    Seo, Jae-sun
    2018 IEEE SYMPOSIUM ON VLSI TECHNOLOGY, 2018, : 173 - 174
  • [19] iMAT: Energy-Efficient In-Memory Acceleration for Ternary Neural Networks With Sparse Dot Product
    Zhu, Shien
    Huai, Shuo
    Xiong, Guochu
    Liu, Weichen
    2023 IEEE/ACM INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN, ISLPED, 2023,
  • [20] Low Power In-Memory Implementation of Ternary Neural Networks with Resistive RAM-Based Synapse
    Laborieux, A.
    Bocquet, M.
    Hirtzlin, T.
    Klein, J-O
    Diez, L. Herrera
    Nowak, E.
    Vianello, E.
    Portal, J-M
    Querlioz, D.
    2020 2ND IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2020), 2020, : 136 - 140