Learning with Noisy labels via Self-supervised Adversarial Noisy Masking

被引:11
|
作者
Tu, Yuanpeng [1 ]
Zhang, Boshen [2 ]
Li, Yuxi [2 ]
Liu, Liang [2 ]
Li, Jian [2 ]
Zhang, Jiangning [2 ]
Wang, Yabiao [2 ]
Wang, Chengjie [2 ,3 ]
Zhao, Cai Rong [1 ]
机构
[1] Tongji Univ, Dept Elect & Informat Engn, Shanghai, Peoples R China
[2] Tencent, YouTu Lab, Shanghai, Peoples R China
[3] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
关键词
CLASSIFICATION;
D O I
10.1109/CVPR52729.2023.01553
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Collecting large-scale datasets is crucial for training deep models, annotating the data, however, inevitably yields noisy labels, which poses challenges to deep learning algorithms. Previous efforts tend to mitigate this problem via identifying and removing noisy samples or correcting their labels according to the statistical properties (e.g., loss values) among training samples. In this paper, we aim to tackle this problem from a new perspective, delving into the deep feature maps, we empirically find that models trained with clean and mislabeled samples manifest distinguishable activation feature distributions. From this observation, a novel robust training approach termed adversarial noisy masking is proposed. The idea is to regularize deep features with a label quality guided masking scheme, which adaptively modulates the input data and label simultaneously, preventing the model to overfit noisy samples. Further, an auxiliary task is designed to reconstruct input data, it naturally provides noise-free self-supervised signals to reinforce the generalization ability of models. The proposed method is simple yet effective, it is tested on synthetic and real-world noisy datasets, where significant improvements are obtained over previous methods. Code is available at https://github.com/yuanpengtu/SANM.
引用
收藏
页码:16186 / 16195
页数:10
相关论文
共 50 条
  • [41] Learning with noisy labels via Mamba and entropy KNN framework
    Wang, Ningwei
    Jin, Weiqiang
    Jing, Shirou
    Bi, Haixia
    Yang, Guang
    APPLIED SOFT COMPUTING, 2025, 169
  • [42] Learning From Noisy Labels via Dynamic Loss Thresholding
    Yang, Hao
    Jin, You-Zhi
    Li, Zi-Yin
    Wang, Deng-Bao
    Geng, Xin
    Zhang, Min-Ling
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6503 - 6516
  • [43] Robust Learning by Self-Transition for Handling Noisy Labels
    Song, Hwanjun
    Kim, Minseok
    Park, Dongmin
    Shin, Yooju
    Lee, Jae-Gil
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 1490 - 1500
  • [44] CoDC: Accurate Learning with Noisy Labels via Disagreement and Consistency
    Dong, Yongfeng
    Li, Jiawei
    Wang, Zhen
    Jia, Wenyu
    BIOMIMETICS, 2024, 9 (02)
  • [45] Learning from Noisy Labels via Discrepant Collaborative Training
    Han, Yan
    Roy, Soumava Kumar
    Petersson, Lars
    Harandi, Mehrtash
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 3158 - 3167
  • [46] CRAS: Curriculum Regularization and Adaptive Semi-Supervised Learning with Noisy Labels
    Higashimoto, Ryota
    Yoshida, Soh
    Muneyasu, Mitsuji
    APPLIED SCIENCES-BASEL, 2024, 14 (03):
  • [47] Teacher/Student Deep Semi-Supervised Learning for Training with Noisy Labels
    Hailat, Zeyad
    Chen, Xue-Wen
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 907 - 912
  • [48] Recycling: Semi-Supervised Learning With Noisy Labels in Deep Neural works
    Kong, Kyeongbo
    Lee, Junggi
    Kwak, Youngchul
    Kang, Minsung
    Kim, Seong Gyun
    Song, Woo-Jin
    IEEE ACCESS, 2019, 7 : 66998 - 67005
  • [49] Partial Label Learning with Noisy Labels
    Zhao, Pan
    Tang, Long
    Pan, Zhigeng
    Annals of Data Science, 2025, 12 (01) : 199 - 212
  • [50] Augmentation Strategies for Learning with Noisy Labels
    Nishi, Kento
    Ding, Yi
    Rich, Alex
    Hollerer, Tobias
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 8018 - 8027