Poisson approximation for a sum of beta geometric random variables

被引:0
|
作者
Teerapaolarn, Kanint [1 ]
机构
[1] Burapha Univ, Fac Sci, Dept Math, Saen Suk 20131, Chonburi, Thailand
关键词
Bete geometric distribution; Poisson approximation; Stein-Chen method; w-functions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the Stein-Chen method and the beta geometric w-functions to give a bound for the total variation distance between the distribution of a sum of independent beta geometric random variables and a Poisson distribution with mean Sigma(n)(i=1) beta(i)/alpha(i)-1, where alpha(i) and beta(i) are parameters of each beta geometric distribution. With this bound, the Poisson distribution with this mean can be used as a good estimate when beta(i) are small and all alpha(i) are large.
引用
收藏
页码:719 / 722
页数:4
相关论文
共 50 条
  • [41] Estimation of typical sum of lognormal random variables using log shifted gamma approximation
    Lam, CLJ
    Le-Ngoc, T
    IEEE COMMUNICATIONS LETTERS, 2006, 10 (04) : 234 - 235
  • [42] A Simple Approximation for the Sum of Fading Random Variables via a Nakagami-m Distribution
    Vega Sanchez, Jose David
    Urquiza-Aguiar, Luis
    Paredes Paredes, Martha Cecilia
    Reinoso Chisaguano, Diego Javier
    2019 IEEE 90TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2019-FALL), 2019,
  • [43] A saddlepoint approximation to the distribution of the sum of independent non-identically uniform random variables
    Murakami, Hidetoshi
    STATISTICA NEERLANDICA, 2014, 68 (04) : 267 - 275
  • [44] Poisson approximations for sequences of random variables
    Cekanavicius, V
    STATISTICS & PROBABILITY LETTERS, 1998, 39 (02) : 101 - 107
  • [45] The conditional maximum of Poisson random variables
    Fazekas, Istvan
    Chuprunov, Alexey
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (16) : 3857 - 3870
  • [46] Dependence on a collection of Poisson random variables
    Luis E. Nieto-Barajas
    Statistical Methods & Applications, 2022, 31 : 21 - 39
  • [47] Dependence on a collection of Poisson random variables
    Nieto-Barajas, Luis E.
    STATISTICAL METHODS AND APPLICATIONS, 2022, 31 (01): : 21 - 39
  • [48] A note on the sum of uniform random variables
    Buonocore, Aniello
    Pirozzi, Enrica
    Caputo, Luigia
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (19) : 2092 - 2097
  • [49] SUM OF EXPONENTIAL RANDOM-VARIABLES
    DEMARET, JC
    GARCET, A
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 1977, 31 (11): : 445 - 448
  • [50] CONVERGENCE OF A SUM OF INDEPENDENT RANDOM VARIABLES
    BARRA, GD
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1963, 59 (02): : 411 - &