Adaptive Bayesian Optimization for State-Dependent Brain Stimulation

被引:2
|
作者
Dabiri, Sina [1 ,2 ]
Cole, Eric R. [1 ,2 ]
Gross, Robert E. [2 ,3 ,4 ,5 ]
机构
[1] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30322 USA
[2] Emory Univ, Atlanta, GA 30322 USA
[3] Emory Univ, Dept Neurosurg, Atlanta, GA 30322 USA
[4] Emory Univ, Dept Neurol, Atlanta, GA 30322 USA
[5] Georgia Inst Technol, Biomed Engn, Atlanta, GA 30322 USA
关键词
D O I
10.1109/NER52421.2023.10123861
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain stimulation has become an important treatment option for a variety of neurological and psychiatric diseases. A key challenge in improving brain stimulation is selecting the optimal set of stimulation parameters for each patient, as parameter spaces are too large for brute-force search and their induced effects can exhibit complex subject-specific behavior. To achieve greatest effectiveness, stimulation parameters may additionally need to be adjusted based on an underlying neural state, which may be unknown, unmeasurable, or challenging to quantify a priori. In this study, we first develop a simulation of a state-dependent brain stimulation experiment using rodent optogenetic stimulation data. We then use this simulation to demonstrate and evaluate two implementations of an adaptive Bayesian optimization algorithm that can model a dynamically changing response to stimulation parameters without requiring knowledge of the underlying neural state. We show that, while standard Bayesian optimization converges and overfits to a single optimal set of stimulation parameters, adaptive Bayesian optimization can continue to update and explore as the neural state is changing and can provide more accurate optimal parameter estimation when the optimal stimulation parameters shift. These results suggest that learning algorithms such as adaptive Bayesian optimization can successfully find optimal state-dependent stimulation parameters, even when brain sensing and decoding technologies are insufficient to track the relevant neural state.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] STATE-DEPENDENT EFFECTS OF GENIOGLOSSAL STIMULATION ON UPPER AIRWAY
    Buterbaugh, J.
    Ahmed, O.
    Wynstra, C.
    Morrison-Barrios, M.
    Koebnick, J.
    Parthasarathy, S.
    SLEEP, 2010, 33 : A18 - A18
  • [32] State-dependent Bayesian foraging on spatially autocorrelated food distributions
    van Gils, Jan A.
    OIKOS, 2010, 119 (02) : 237 - 244
  • [33] Deep brain stimulation has state-dependent effects on motor connectivity in Parkinson's disease
    Kahan, Joshua
    Mancini, Laura
    Flandin, Guillaume
    White, Mark
    Papadaki, Anastasia
    Thornton, John
    Yousry, Tarek
    Zrinzo, Ludvic
    Hariz, Marwan
    Limousin, Patricia
    Friston, Karl
    Foltynie, Tom
    BRAIN, 2019, 142 : 2417 - 2431
  • [34] Brain State-Dependent Stimulation Combining a BCI with a Hybrid Robotic System for Modulating Cortical Excitability
    Resquin, F.
    Ibanez, J.
    Herrero, O.
    Gonzalez-Vargas, J.
    Brunetti, F.
    Pons, J. L.
    CONVERGING CLINICAL AND ENGINEERING RESEARCH ON NEUROREHABILITATION III, 2019, 21 : 1075 - 1079
  • [35] Epidemic processes over adaptive state-dependent networks
    Ogura, Masaki
    Preciado, Victor M.
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [36] Periodic adaptive learning compensation of state-dependent disturbance
    Ahn, H-S.
    Chen, Y. Q.
    IET CONTROL THEORY AND APPLICATIONS, 2010, 4 (04): : 529 - 538
  • [37] All brain work - including recall - is state-dependent
    Lehmann, D
    Koukkou, M
    BEHAVIORAL AND BRAIN SCIENCES, 2000, 23 (06) : 964 - +
  • [38] Continuous State-dependent Decoders for Brain Machine Interfaces
    Ethier, Christian
    Sachs, Nicholas A.
    Miller, Lee E.
    2011 5TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2011, : 473 - 477
  • [39] Towards real-time identification of large-scale brain states for improved brain state-dependent stimulation
    Marzetti, Laura
    Makkinayeri, Saeed
    Pieramico, Giulia
    Guidotti, Roberto
    D'Andrea, Antea
    Roine, Timo
    Mutanen, Tuomas P.
    Souza, Victor H.
    Kicic, Dubravko
    Baldassarre, Antonello
    Ermolova, Maria
    Pankka, Hanna
    Ilmoniemi, Risto J.
    Ziemann, Ulf
    Romani, Gian Luca
    Pizzella, Vittorio
    CLINICAL NEUROPHYSIOLOGY, 2024, 158 : 196 - 203
  • [40] State-dependent neurovascular modulation induced by transcranial ultrasound stimulation
    Song, Hang
    Chen, Ruoyu
    Ren, Liyuan
    Sun, Junfeng
    Tong, Shanbao
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2025,