Adaptive Bayesian Optimization for State-Dependent Brain Stimulation

被引:2
|
作者
Dabiri, Sina [1 ,2 ]
Cole, Eric R. [1 ,2 ]
Gross, Robert E. [2 ,3 ,4 ,5 ]
机构
[1] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30322 USA
[2] Emory Univ, Atlanta, GA 30322 USA
[3] Emory Univ, Dept Neurosurg, Atlanta, GA 30322 USA
[4] Emory Univ, Dept Neurol, Atlanta, GA 30322 USA
[5] Georgia Inst Technol, Biomed Engn, Atlanta, GA 30322 USA
关键词
D O I
10.1109/NER52421.2023.10123861
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain stimulation has become an important treatment option for a variety of neurological and psychiatric diseases. A key challenge in improving brain stimulation is selecting the optimal set of stimulation parameters for each patient, as parameter spaces are too large for brute-force search and their induced effects can exhibit complex subject-specific behavior. To achieve greatest effectiveness, stimulation parameters may additionally need to be adjusted based on an underlying neural state, which may be unknown, unmeasurable, or challenging to quantify a priori. In this study, we first develop a simulation of a state-dependent brain stimulation experiment using rodent optogenetic stimulation data. We then use this simulation to demonstrate and evaluate two implementations of an adaptive Bayesian optimization algorithm that can model a dynamically changing response to stimulation parameters without requiring knowledge of the underlying neural state. We show that, while standard Bayesian optimization converges and overfits to a single optimal set of stimulation parameters, adaptive Bayesian optimization can continue to update and explore as the neural state is changing and can provide more accurate optimal parameter estimation when the optimal stimulation parameters shift. These results suggest that learning algorithms such as adaptive Bayesian optimization can successfully find optimal state-dependent stimulation parameters, even when brain sensing and decoding technologies are insufficient to track the relevant neural state.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Brain State-Dependent Brain Stimulation
    Bergmann, Til O.
    FRONTIERS IN PSYCHOLOGY, 2018, 9
  • [2] State-dependent brain stimulation: Power or phase?
    Khademi, Fatemeh
    Royter, Vladislav
    Gharabaghi, Alireza
    BRAIN STIMULATION, 2019, 12 (02) : 296 - 299
  • [3] Bayesian optimization of empirical model with state-dependent stochastic forcing
    Gavrilov, Andrey
    Loskutov, Evgeny
    Mukhin, Dmitry
    CHAOS SOLITONS & FRACTALS, 2017, 104 : 327 - 337
  • [4] Learning State-Dependent Neural Modulation Policies with Bayesian Optimization
    Connolly, Mark J.
    Park, Sang-Eon
    Gross, Robert E.
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 6454 - 6457
  • [5] State-dependent effects of neural stimulation on brain function and cognition
    Claire Bradley
    Abbey S. Nydam
    Paul E. Dux
    Jason B. Mattingley
    Nature Reviews Neuroscience, 2022, 23 : 459 - 475
  • [6] State-dependent effects of neural stimulation on brain function and cognition
    Bradley, Claire
    Nydam, Abbey S.
    Dux, Paul E.
    Mattingley, Jason B.
    NATURE REVIEWS NEUROSCIENCE, 2022, 23 (08) : 459 - 475
  • [7] State-dependent responses to intracranial brain stimulation in a patient with depression
    Scangos, Katherine W.
    Makhoul, Ghassan S.
    Sugrue, Leo P.
    Chang, Edward F.
    Krystal, Andrew D.
    NATURE MEDICINE, 2021, 27 (02) : 229 - +
  • [8] State-dependent responses to intracranial brain stimulation in a patient with depression
    Katherine W. Scangos
    Ghassan S. Makhoul
    Leo P. Sugrue
    Edward F. Chang
    Andrew D. Krystal
    Nature Medicine, 2021, 27 : 229 - 231
  • [9] Adaptive State-Dependent Diffusion for Derivative-Free Optimization
    Engquist, Bjorn
    Ren, Kui
    Yang, Yunan
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024, 6 (02) : 1241 - 1269
  • [10] Brain state-dependent stimulation boosts functional recovery following stroke
    Mrachacz-Kersting, Natalie
    Stevenson, Andrew J. T.
    Jorgensen, Helle R. M.
    Severinsen, Kare Eg
    Aliakbaryhosseinabadi, Susan
    Jiang, Ning
    Farina, Dario
    ANNALS OF NEUROLOGY, 2019, 85 (01) : 84 - 95