Data-Driven Navigation of Ferromagnetic Soft Continuum Robots Based on Machine Learning

被引:9
|
作者
Ni, Yangyang [1 ]
Sun, Yuxuan [1 ]
Zhang, Huajian [1 ]
Li, Xingxiang [1 ]
Zhang, Shiwu [1 ]
Li, Mujun [1 ]
机构
[1] Univ Sci & Technol China, Dept Precis Machinery & Precis Instrumentat, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
machine learning; navigation; segmented control; soft continuum robots;
D O I
10.1002/aisy.202200167
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ferromagnetic soft continuum robots (FSCRs) have great potential in biomedical applications due to their miniaturization and remote control capabilities. However, to direct the FSCR accurately and effectively, it is critical to realize inverse kinematics control in navigation, which is difficult for existing mechanical models. Herein, with the path segmentation strategy, an automatic method to navigate the FSCR in different paths based on machine learning is developed. A data-driven artificial neural network (ANN) model to guide the steering of the magnetically responsive tip is presented. Using parametric simulations as the training data, the ANN model shows good generalization performance to predict control parameters. Moreover, the basic framework of the learning model remains effective when the FSCR materials change, which shows high scalability and is important for adapting to various environments. The study presents a promising strategy for guiding FSCRs in the narrow and tortuous vasculature, which is essential for many biomedical operations.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Data-driven drug discovery and medical treatment by machine learning
    Yamanishi, Yoshihiro
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [42] Data-Driven Approaches in Antimicrobial Resistance: Machine Learning Solutions
    Sakagianni, Aikaterini
    Koufopoulou, Christina
    Koufopoulos, Petros
    Kalantzi, Sofia
    Theodorakis, Nikolaos
    Nikolaou, Maria
    Paxinou, Evgenia
    Kalles, Dimitris
    Verykios, Vassilios S.
    Myrianthefs, Pavlos
    Feretzakis, Georgios
    ANTIBIOTICS-BASEL, 2024, 13 (11):
  • [43] Prediction of casing damage: A data-driven, machine learning approach
    Zhao Y.
    Jiang H.
    Li H.
    International Journal of Circuits, Systems and Signal Processing, 2020, 14 : 1047 - 1053
  • [44] Data-Driven Machine Learning Informed Maneuvering and Control Simulation
    Shan, Hua
    Jiang, Li
    Faller, Will
    Hess, David
    Atsavapranee, Paisan
    Drazen, David
    AIAA AVIATION FORUM AND ASCEND 2024, 2024,
  • [45] A DATA-DRIVEN WORKFLOW FOR PREDICTION OF FRACTURING PARAMETERS WITH MACHINE LEARNING
    Zhu, Zhihua
    Hsu, Maoya
    Kun, Ding
    Wang, Tianyu
    He, Xiaodong
    Tian, Shouceng
    THERMAL SCIENCE, 2024, 28 (2A): : 1085 - 1090
  • [46] Data-driven recipe completion using machine learning methods
    De Clercq, Marlies
    Stock, Michiel
    De Baets, Bernard
    Waegeman, Willem
    TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2016, 49 : 1 - 13
  • [47] Data-Driven Computational Neuroscience: Machine Learning and Statistical Models
    Kreinovich, Vladik
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (01) : 2513 - 2514
  • [48] Clustering suicides: A data-driven, exploratory machine learning approach
    Ludwig, Birgit
    Koenig, Daniel
    Kapusta, Nestor D.
    Blueml, Victor
    Dorffner, Georg
    Vyssoki, Benjamin
    EUROPEAN PSYCHIATRY, 2019, 62 : 15 - 19
  • [49] Data-driven drug discovery and repositioning by machine learning methods
    Yamanishi, Yoshihiro
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [50] Data-driven modeling of technology acceptance: A machine learning perspective
    Alwabel, Asim Suleman A.
    Zeng, Xiao-Jun
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185