One-Stage Multi-view Clustering with Hierarchical Attributes Extraction

被引:3
|
作者
Mi, Yong [1 ]
Dai, Jian [2 ]
Ren, Zhenwen [3 ]
You, Xiaojian [1 ]
Wang, Yanlong [4 ]
机构
[1] Southwest Univ Sci & Technol, Sch Natl Def Sci & Technol, Mianyang 621010, Sichuan, Peoples R China
[2] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu 610097, Peoples R China
[3] China South Ind Grp Corp, Southwest Automat Res Inst, Mianyang 621000, Sichuan, Peoples R China
[4] Commun Univ Zhejiang, Coll Media Engn, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view clustering; Deep matrix factorization; Local manifold learning; Spectral rotating; GRAPH;
D O I
10.1007/s12559-022-10060-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view clustering (MVC) has received significant attention, and obtained praiseworthy performance improvement in comparison with signal-view clustering, since it can effectively take advantage of the underlying correlation and structure information of multi-view data. However, existing methods only utilize signal-layer mapping to exploit clustering information, and ignore the underlying hierarchical attribute information in complex and interleaved multi-view data. In this work, we propose a novel MVC method, one-stage multi-view clustering with hierarchical attributes extracting (OS-HAE), to exploit the underlying hierarchical attributes for MVC. Specifically, we learn multiple latent representations from each view by a novel deep matrix factorization (DMF) framework with a layer-wise scheme, so that the learned representations can contain the hierarchical attribute information of original multi-view data. In addition, the samples from the same clusters but from different views are forced to be closer, and samples from different cluster are away from each other in the latent low-dimensional space. Furthermore, we introduce local manifold learning to guide DMF, such that the deepest representations can preserve structure information of original data. Meanwhile, a novel auto-weighted spectral rotating fusion (ASRF) paradigm is proposed to obtain the final clustering indicator matrix directly, so that OS-HAE can avoid obtaining suboptimal results caused by a two-stage strategy. Then, an alternate algorithm is designed to solve the objective function. Experimental results on six datasets demonstrate the advancement and effectiveness of the proposed OS-HAE. Consequently, the proposed method can effectively exploit the hierarchical information of multi-view to improve clustering performance.
引用
收藏
页码:552 / 564
页数:13
相关论文
共 50 条
  • [21] Multi-View Multiple Clustering
    Yao, Shixin
    Yu, Guoxian
    Wang, Jun
    Domeniconi, Carlotta
    Zhang, Xiangliang
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4121 - 4127
  • [22] Multi-view Clustering: A Survey
    Yan Yang
    Hao Wang
    Big Data Mining and Analytics, 2018, 1 (02) : 83 - 107
  • [23] Multi-view Clustering: A Survey
    Yang, Yan
    Wang, Hao
    BIG DATA MINING AND ANALYTICS, 2018, 1 (02) : 83 - 107
  • [24] Multi-View Subspace Clustering
    Gao, Hongchang
    Nie, Feiping
    Li, Xuelong
    Huang, Heng
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4238 - 4246
  • [25] Collaborative Multi-View Clustering
    Ghassany, Mohamad
    Grozavu, Nistor
    Bennani, Younes
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [26] Partial Multi-View Clustering
    Li, Shao-Yuan
    Jiang, Yuan
    Zhou, Zhi-Hua
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 1968 - 1974
  • [27] Interpretable multi-view clustering
    Jiang, Mudi
    Hu, Lianyu
    He, Zengyou
    Chen, Zhikui
    PATTERN RECOGNITION, 2025, 162
  • [28] Continual Multi-view Clustering
    Wan, Xinhang
    Liu, Jiyuan
    Liang, Weixuan
    Liu, Xinwang
    Wen, Yi
    Zhu, En
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3676 - 3684
  • [29] Reliable Multi-View Clustering
    Tao, Hong
    Hou, Chenping
    Liu, Xinwang
    Yi, Dongyun
    Zhu, Jubo
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 4123 - 4130
  • [30] Binary Multi-View Clustering
    Zhang, Zheng
    Liu, Li
    Shen, Fumin
    Shen, Heng Tao
    Shao, Ling
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (07) : 1774 - 1782