DenseNet-II: an improved deep convolutional neural network for melanoma cancer detection

被引:17
|
作者
Girdhar, Nancy [1 ]
Sinha, Aparna [2 ]
Gupta, Shivang [2 ]
机构
[1] Bennett Univ, Sch Comp Sci Engn & Technol, Greater Noida, UP, India
[2] Amity Univ, Amity Sch Engn & Technol, Noida, UP, India
关键词
Melanoma detection; ResNet; DenseNet; VGG; Lesions; HAM10000; Deep learning; Machine learning; IMAGE CLASSIFICATION; SKIN-CANCER; ARTIFICIAL-INTELLIGENCE; COLLECTIVE INTELLIGENCE; LEVEL CLASSIFICATION; DERMATOLOGISTS; PREDICTION;
D O I
10.1007/s00500-022-07406-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Research in the field of medicine and relevant studies evince that melanoma is one of the deadliest cancers. It defines precisely that the condition develops due to uncontrolled growth of melanocytic cells. The current trends in any disease detection revolve around the usage of two main categories of models; these are general machine learning models and deep learning models. Further, the experimental analysis of melanoma has an additional requirement of visual records like dermatological scans or normal camera lens images. This further accentuates the need for a more accurate model for melanoma detection. In this work, we aim to achieve the same, primarily by the extensive usage of neural networks. Our objective is to propose a deep learning CNN framework-based model to improve the accuracy of melanoma detection by customizing the number of layers in the network architecture, activation functions applied, and the dimension of the input array. Models like Resnet, DenseNet, Inception, and VGG have proved to yield appreciable accuracy in melanoma detection. However, in most cases, the dataset was classified into malignant or benign classes only. The dataset used in our research provides seven lesions; these are melanocytic nevi, melanoma, benign keratosis, basal cell carcinoma, actinic keratoses, vascular lesions, and dermatofibroma. Thus, through the HAM10000 dataset and various deep learning models, we diversified the precision factors as well as input qualities. The obtained results are highly propitious and establish its credibility.
引用
收藏
页码:13285 / 13304
页数:20
相关论文
共 50 条
  • [11] A deep convolutional neural network based framework for breast cancer detection
    Dutta, Debrina
    Chakraborty, Debashis
    PROCEEDINGS OF 2020 6TH IEEE INTERNATIONAL WOMEN IN ENGINEERING (WIE) CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE 2020), 2020, : 436 - 439
  • [12] Cervical Cancer Cell Detection Based on Deep Convolutional Neural Network
    Xia, Mingyang
    Zhang, Guoshan
    Mu, Chaoxu
    Guan, Bin
    Wang, Mengxuan
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 6527 - 6532
  • [13] Obstacle Detection with Deep Convolutional Neural Network
    Yu, Hong
    Hong, Ruxia
    Huang, XiaoLei
    Wang, Zhengyou
    2013 SIXTH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 1, 2013, : 265 - 268
  • [14] Deep Convolutional Neural Network for Fog Detection
    Zhang, Jun
    Lu, Hui
    Xia, Yi
    Han, Ting-Ting
    Miao, Kai-Chao
    Yao, Ye-Qing
    Liu, Cheng-Xiao
    Zhou, Jian-Ping
    Chen, Peng
    Wang, Bing
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, PT II, 2018, 10955 : 1 - 10
  • [15] Deep Convolutional Neural Network for Fire Detection
    Gotthans, Jakub
    Gotthans, Tomas
    Marsalek, Roman
    PROCEEDINGS OF THE 2020 30TH INTERNATIONAL CONFERENCE RADIOELEKTRONIKA (RADIOELEKTRONIKA), 2020, : 128 - 133
  • [16] Pedestrian Detection with Deep Convolutional Neural Network
    Chen, Xiaogang
    Wei, Pengxu
    Ke, Wei
    Ye, Qixiang
    Jiao, Jianbin
    COMPUTER VISION - ACCV 2014 WORKSHOPS, PT I, 2015, 9008 : 354 - 365
  • [17] An Improved Densenet Deep Neural Network Model for Tuberculosis Detection Using Chest X-Ray Images
    Huy, Vo Trong Quang
    Lin, Chih-Min
    IEEE ACCESS, 2023, 11 : 42839 - 42849
  • [18] Breast cancer detection: Shallow convolutional neural network against deep convolutional neural networks based approach
    Das, Himanish Shekhar
    Das, Akalpita
    Neog, Anupal
    Mallik, Saurav
    Bora, Kangkana
    Zhao, Zhongming
    FRONTIERS IN GENETICS, 2023, 13
  • [19] Deep Convolutional Generative Adversarial Network and Convolutional Neural Network for Smoke Detection
    Yin, Hang
    Wei, Yurong
    Liu, Hedan
    Liu, Shuangyin
    Liu, Chuanyun
    Gao, Yacui
    COMPLEXITY, 2020, 2020
  • [20] YOLOv5-CSF: an improved deep convolutional neural network for flame detection
    Yan, Chunman
    Wang, Qingpeng
    Zhao, Yufan
    Zhang, Xiang
    SOFT COMPUTING, 2023, 27 (24) : 19013 - 19023