Multigrid Methods for The Solution of Nonlinear Variational Inequalities

被引:2
|
作者
El Houda, Nesba Nour [1 ]
Mohammed, Beggas [1 ]
Essaid, Belouafi Mohammed [1 ]
Ahmad, Imtiaz [2 ]
Ahmad, Hijaz [3 ,4 ,5 ]
Askar, Sameh [6 ]
机构
[1] Echahid Hamma Lakhdar Univ El Oued, Fac Exact Sci, PDE & Applicat Lab, Operator Theory, El Oued, Algeria
[2] Univ Tenaga Nas, Inst Informat & Comp Energy IICE, Kajang, Selangor, Malaysia
[3] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II,39, I-00186 Rome, Italy
[4] Near East Univ, Operat Res Ctr Healthcare, TRNC Mersin 10, TR-99138 Nicosia, Turkiye
[5] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[6] King Saud Univ, Dept Stat & Operat Res, Coll Sci, POB 2455, Riyadh 11451, Saudi Arabia
来源
关键词
Multigrid method; nonlinear variational inequality; finite element; iterative method; HJB equation; NUMERICAL-SOLUTION; CONVERGENCE; EQUATIONS; NORM;
D O I
10.29020/nybg.ejpam.v16i3.4835
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this research, we investigate the numerical solution of second member problems that depend on the solution obtained through a multigrid method. Specifically, we focus on the application of multigrid techniques for solving nonlinear variational inequalities. The main objective is to establish the uniform convergence of the multigrid algorithm. To achieve this, we employ elementary subdifferential calculus and draw insights from the convergence theory of nonlinear multigrid methods.
引用
收藏
页码:1956 / 1969
页数:14
相关论文
共 50 条