Study on thermal-hydraulic performance of printed circuit heat exchangers with supercritical methane based on machine learning methods

被引:32
|
作者
Li, Qian [1 ]
Zhan, Qi [1 ]
Yu, Shipeng [1 ]
Sun, Jianchuang [1 ]
Cai, Weihua [1 ]
机构
[1] Northeast Elect Power Univ, Sch Energy & Power Engn, Lab Thermo Fluid Sci & Nucl Engn, Jilin 132012, Peoples R China
关键词
Printed circuit heat exchanger; Supercritical methane; Artificial neural network; Machine learning; One-dimensional simulation; PREDICTION; FLOW;
D O I
10.1016/j.energy.2023.128711
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, a machine learning approach was used to predict thermal-hydraulic performance of supercritical methane flow in a printed circuit heat exchanger (PCHE). Local multiple physical parameters within the PCHE semicircular straight channel obtained from numerical simulations were employed and data of 6213 micro segments were obtained. Four machine learning models were used to predict local heat transfer coefficient and unit pressure drop at different operating conditions. By comparing the predicted results obtained after hyper-parameter optimization, it shows that artificial neural network (ANN) can predict the parameters with higher accuracy. The ANN model can achieve a coefficient of determination (R2) of 0.9994 with mean absolute percentage error (MAPE) of 0.252% for the heat transfer coefficient, and R2 of 0.9996 with MAPE of 1.749% for the unit pressure drop. To verify the accuracy of machine learning model, a one-dimensional simulation model embedded with ANN model was built to calculate the temperature and pressure distribution in the entire PCHE channel. The results show the temperature and pressure distribution agree well with numerical results. This work provides an accurate machine learning approach to predict flow and heat transfer parameters, which is of great value for the simulation and design of the PCHE.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Numerical investigation on thermal-hydraulic performance of supercritical LNG in a Zigzag mini-channel of printed circuit heat exchanger
    Cai, W. -H.
    Li, Y.
    Li, Q.
    Wang, Y.
    Chen, J.
    APPLIED THERMAL ENGINEERING, 2022, 214
  • [22] Numerical investigation on the Thermal-hydraulic performance of the modified channel supercritical CO2 printed circuit heat exchanger
    Wang, Jian
    Yan, Xin-ping
    Boersma, Bendiks J.
    Lu, Ming-jian
    Liu, Xiaohua
    APPLIED THERMAL ENGINEERING, 2023, 221
  • [23] Numerical investigation on the thermal-hydraulic performance of helical twine printed circuit heat exchanger
    Li, Yantao
    Qiu, Zhiling
    Cui, Daan
    Wang, Zhe
    Zhang, Jifeng
    Ji, Yulong
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2021, 128
  • [24] Numerical investigation on thermal-hydraulic performance of new printed circuit heat exchanger model
    Kim, Dong Eok
    Kim, Moo Hwan
    Cha, Jae Eun
    Kim, Seong O.
    NUCLEAR ENGINEERING AND DESIGN, 2008, 238 (12) : 3269 - 3276
  • [25] Experimental and numerical study on thermal-hydraulic performance of printed circuit heat exchanger for liquefied gas vaporization
    Zhao, Zhongchao
    Chen, Xudong
    Zhang, Xiao
    Ma, Xiaolong
    Yang, Shan
    ENERGY SCIENCE & ENGINEERING, 2020, 8 (02) : 426 - 440
  • [26] Study on Thermal-Hydraulic Characteristics of Novel Channels for Printed Circuit Heat Exchanger Using Supercritical CO2
    Yang, He
    Li, Jinduo
    Wei, Huimin
    Du, Xiaoze
    Wu, Hongwei
    Journal of Thermal Science and Engineering Applications, 2023, 15 (11):
  • [27] Study on Thermal-Hydraulic Characteristics of Novel Channels for Printed Circuit Heat Exchanger Using Supercritical CO2
    Yang, He
    Li, Jinduo
    Wei, Huimin
    Du, Xiaoze
    Wu, Hongwei
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2023, 15 (11)
  • [28] Numerical simulation on heat transfer and flow of supercritical methane in printed circuit heat exchangers
    Ruan, Binhui
    Lin, Wensheng
    Li, Weizhe
    Hu, Guoqiang
    CRYOGENICS, 2022, 126
  • [29] A Review on the Thermal-Hydraulic Performance and Optimization of Compact Heat Exchangers
    Liao, Gaoliang
    Li, Zhizhou
    Zhang, Feng
    Liu, Lijun
    E, Jiaqiang
    ENERGIES, 2021, 14 (19)
  • [30] Investigation on Thermal-Hydraulic Performance in a Printed Circuit Heat Exchanger with Airfoil and Vortex Generator Fins for Supercritical Liquefied Natural Gas
    Tang, Ling-Hong
    Pan, Jie
    Sunden, Bengt
    HEAT TRANSFER ENGINEERING, 2021, 42 (10) : 803 - 823