Energy Efficient Joint Computation Offloading and Service Caching for Mobile Edge Computing: A Deep Reinforcement Learning Approach

被引:33
|
作者
Zhou, Huan [1 ,2 ]
Zhang, Zhenyu [1 ,2 ]
Wu, Yuan [3 ,4 ,5 ]
Dong, Mianxiong [6 ]
Leung, Victor C. M. [7 ,8 ]
机构
[1] China Three Gorges Univ, Coll Comp & Informat Technol, Yichang 443002, Peoples R China
[2] China Three Gorges Univ, Hubei Key Lab Intelligent Vis Based Monitoring Hy, Yichang 443002, Peoples R China
[3] Univ Macau, State Key Lab Internet Things Smart City, Macau, Peoples R China
[4] Univ Macau, Dept Comp & Informat Sci, Macau, Peoples R China
[5] Zhuhai UM Sci & Technol, Res Inst, Zhuhai 519031, Peoples R China
[6] Muroran Inst Technol, Dept Sci & Informat, Muroran 0508585, Japan
[7] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[8] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
基金
中国国家自然科学基金;
关键词
Task analysis; Energy consumption; Resource management; Collaboration; Servers; Optimization; Delays; Computation offloading; service caching; mobile edge computing; deep deterministic policy gradient; RESOURCE-ALLOCATION; PLACEMENT; OPTIMIZATION; INTERNET; MEC;
D O I
10.1109/TGCN.2022.3186403
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Mobile Edge Computing (MEC) meets the delay requirements of emerging applications and reduces energy consumption by pushing cloud functions to the edge of the networks. Service caching is to cache application services and related databases at Edge Servers (ESs) in advance, and then ESs can process the relevant computation tasks. Due to the limited resources in the ESs, how to determine an effective service caching strategy is very crucial. In addition, the heterogeneity of ESs makes it impossible to make full use of the computing and caching resources without considering the collaboration among ESs. This paper considers a joint optimization of computation offloading, service caching, and resource allocation in a collaborative MEC system with multi-users, and formulates the problem as Mixed-Integer Non-Linear Programming (MINLP) which aims at minimizing the long-term energy consumption of the system. To solve the optimization problem, a Deep Deterministic Policy Gradient (DDPG) based algorithm is proposed for determining the strategies of computation offloading, service caching, and resource allocation. Simulation results demonstrate that the proposed DDPG based algorithm can reduce the long-term energy consumption of the system greatly, and can outperform some other benchmark algorithms under different scenarios.
引用
收藏
页码:950 / 961
页数:12
相关论文
共 50 条
  • [31] Dependency-Aware Computation Offloading in Mobile Edge Computing: A Reinforcement Learning Approach
    Pan, Shengli
    Zhang, Zhiyong
    Zhang, Zongwang
    Zeng, Deze
    IEEE ACCESS, 2019, 7 : 134742 - 134753
  • [32] Joint Offloading and Resource Allocation Using Deep Reinforcement Learning in Mobile Edge Computing
    Zhang, Xinjie
    Zhang, Xinglin
    Yang, Wentao
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (05): : 3454 - 3466
  • [33] Deep Reinforcement Learning-Based Task Offloading and Service Migrating Policies in Service Caching-Assisted Mobile Edge Computing
    Ke Hongchang
    Wang Hui
    Sun Hongbin
    Halvin Yang
    China Communications, 2024, 21 (04) : 88 - 103
  • [34] Deep reinforcement learning-based task offloading and service migrating policies in service caching-assisted mobile edge computing
    Ke, Hongchang
    Wang, Hui
    Sun, Hongbin
    Yang, Halvin
    CHINA COMMUNICATIONS, 2024, 21 (04) : 88 - 103
  • [35] Deep Reinforcement Learning for Energy-Efficient Edge Caching in Mobile Edge Networks
    Deng, Meng
    Huan, Zhou
    Kai, Jiang
    Zheng, Hantong
    Yue, Cao
    Peng, Chen
    CHINA COMMUNICATIONS, 2024, : 1 - 14
  • [36] Deep Reinforcement Learning for Energy-Efficient Edge Caching in Mobile Edge Networks
    Meng Deng
    Zhou Huan
    Jiang Kai
    Zheng Hantong
    Cao Yue
    Chen Peng
    China Communications, 2024, 21 (11) : 243 - 256
  • [37] Joint Service Caching and Task Offloading for Mobile Edge Computing in Dense Networks
    Xu, Jie
    Chen, Lixing
    Zhou, Pan
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (IEEE INFOCOM 2018), 2018, : 207 - 215
  • [38] Joint optimization of service chain caching and task offloading in mobile edge computing
    Peng, Kai
    Nie, Jiangtian
    Kumar, Neeraj
    Cai, Chao
    Kang, Jiawen
    Xiong, Zehui
    Zhang, Yang
    APPLIED SOFT COMPUTING, 2021, 103
  • [39] Online Deep Reinforcement Learning for Computation Offloading in Blockchain-Empowered Mobile Edge Computing
    Qiu, Xiaoyu
    Liu, Luobin
    Chen, Wuhui
    Hong, Zicong
    Zheng, Zibin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (08) : 8050 - 8062
  • [40] A Deep-Reinforcement-Learning-Based Computation Offloading With Mobile Vehicles in Vehicular Edge Computing
    Lin, Jie
    Huang, Siqi
    Zhang, Hanlin
    Yang, Xinyu
    Zhao, Peng
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (17) : 15501 - 15514