Nanowarming and ice-free cryopreservation of large sized, intact porcine articular cartilage

被引:8
|
作者
Chen, Peng [1 ]
Wang, Shangping [1 ]
Chen, Zhenzhen [2 ]
Ren, Pengling [1 ,3 ]
Hepfer, R. Glenn [1 ,4 ]
Greene, Elizabeth D. [2 ]
Campbell, Lia H. [2 ]
Helke, Kristi L. [5 ]
Nie, Xingju [6 ]
Jensen, Jens H. [6 ]
Hill, Cherice [1 ,4 ]
Wu, Yongren [1 ,3 ]
Brockbank, Kelvin G. M. [1 ,2 ]
Yao, Hai [1 ,3 ,4 ]
机构
[1] Clemson Univ, Dept Bioengn, Clemson, SC 29634 USA
[2] Tissue Testing Technol LLC, N Charleston, SC USA
[3] Med Univ South Carolina, Dept Orthopaed, Charleston, SC 29209 USA
[4] Med Univ South Carolina, Dept Oral Hlth Sci, Charleston, SC 29209 USA
[5] Med Univ South Carolina, Dept Comparat Med, Charleston, SC USA
[6] Med Univ South Carolina, Dept Neurosci, Charleston, SC USA
基金
美国国家卫生研究院;
关键词
FIXED CHARGE-DENSITY; ELECTRICAL-CONDUCTIVITY; KNEE; VITRIFICATION; CRYOPROTECTANT; DEFECTS; ORGAN; CRYSTALLIZATION; NANOPARTICLES; PRESERVATION;
D O I
10.1038/s42003-023-04577-9
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Successful organ or tissue long-term preservation would revolutionize biomedicine. Cartilage cryopreservation enables prolonged shelf life of articular cartilage, posing the prospect to broaden the implementation of promising osteochondral allograft (OCA) transplantation for cartilage repair. However, cryopreserved large sized cartilage cannot be successfully warmed with the conventional convection warming approach due to its limited warming rate, blocking its clinical potential. Here, we develope a nanowarming and ice-free cryopreservation method for large sized, intact articular cartilage preservation. Our method achieves a heating rate of 76.8 degrees C min(-1), over one order of magnitude higher than convection warming (4.8 degrees C min(-1)). Using systematic cell and tissue level tests, we demonstrate the superior performance of our method in preserving large cartilage. A depth-dependent preservation manner is also observed and recapitulated through magnetic resonance imaging and computational modeling. Finally, we show that the delivery of nanoparticles to the OCA bone side could be a feasible direction for further optimization of our method. This study pioneers the application of nanowarming and ice-free cryopreservation for large articular cartilage and provides valuable insights for future technique development, paving the way for clinical applications of cryopreserved cartilage. Large-sized articular cartilage samples are vitrified and warmed using nanoparticles to induce heat in a radiofrequency alternative magnetic field to improve post-warming performance.
引用
收藏
页数:13
相关论文
共 25 条
  • [11] Sea ice-free corridors for large swell to reach Antarctic ice shelves
    Teder, N. J.
    Bennetts, L. G.
    Reid, P. A.
    Massom, R. A.
    ENVIRONMENTAL RESEARCH LETTERS, 2022, 17 (04):
  • [12] In vivo evaluation of the effects of a new ice-free cryopreservation process on autologous vascular grafts
    Song, YC
    Hagen, PO
    Lightfoot, FG
    Taylor, MJ
    Smith, AC
    Brockbank, KGM
    JOURNAL OF INVESTIGATIVE SURGERY, 2000, 13 (05) : 279 - 288
  • [13] Cryopreservation of porcine articular cartilage: MRI and biochemical results after different freezing protocols
    Laouar, Leila
    Fishbein, Ken
    McGann, Locksley E.
    Horton, Walter E.
    Spencer, Richard G.
    Jomha, Nadr M.
    CRYOBIOLOGY, 2007, 54 (01) : 36 - 43
  • [14] Ice-Free Radiative Convection Drives Spring Mixing in a Large Lake
    Cannon, D. J.
    Troy, C. D.
    Liao, Q.
    Bootsma, H. A.
    GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (12) : 6811 - 6820
  • [15] Ice-free cryopreservation of heart valve allografts: better extracellular matrix preservation in vivo and preclinical results
    Kelvin G. M. Brockbank
    Katja Schenke-Layland
    Elizabeth D. Greene
    Zhenzhen Chen
    Olaf Fritze
    Martina Schleicher
    Renate Kaulitz
    Iris Riemann
    Falko Fend
    Johannes M. Albes
    Ulrich A. Stock
    Milan Lisy
    Cell and Tissue Banking, 2012, 13 : 663 - 671
  • [16] Eddy generation in a large, deep dimictic freshwater lake in ice-free period
    Kouraev, Alexei V.
    Zakharova, Elena A.
    Kostianoy, Andrey G.
    Hall, Nicholas M. J.
    Ginzburg, Anna I.
    Remy, Frederique
    Zdorovennov, Roman E.
    Suknev, Andrey Ya
    LIMNOLOGY AND OCEANOGRAPHY, 2025,
  • [17] Ice-free cryopreservation of heart valve allografts: better extracellular matrix preservation in vivo and preclinical results
    Brockbank, Kelvin G. M.
    Schenke-Layland, Katja
    Greene, Elizabeth D.
    Chen, Zhenzhen
    Fritze, Olaf
    Schleicher, Martina
    Kaulitz, Renate
    Riemann, Iris
    Fend, Falko
    Albes, Johannes M.
    Stock, Ulrich A.
    Lisy, Milan
    CELL AND TISSUE BANKING, 2012, 13 (04) : 663 - 671
  • [18] Cartilage Viability and Catabolism in the Intact Porcine Knee following Transarticular Impact Loading with and without Articular Fracture
    Backus, Jonathon D.
    Furman, Bridgette D.
    Swimmer, Troy
    Kent, Collin L.
    McNulty, Amy L.
    DeFrate, Louis E.
    Guilak, Farshid
    Olson, Steven A.
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2011, 29 (04) : 501 - 510
  • [19] Development of a Simplified Ice-Free Cryopreservation Method for Heart Valves Employing VS83, an 83% Cryoprotectant Formulation
    Huber, Agnes J. T.
    Brockbank, Kelvin G. M.
    Aberle, Timo
    Schleicher, Martina
    Chen, Zhen Z.
    Greene, Elisabeth D.
    Lisy, Milan
    Stock, Ulrich A.
    BIOPRESERVATION AND BIOBANKING, 2012, 10 (06) : 479 - 484
  • [20] Repairing large porcine full-thickness defects of articular cartilage using autologous chondrocyte-engineered cartilage
    Liu, YC
    Chen, FG
    Liu, W
    Cui, L
    Shang, QX
    Xia, WY
    Wang, J
    Cui, YM
    Yang, GH
    Liu, DL
    Wu, JJ
    Xu, R
    Buonocore, SD
    Cao, YL
    TISSUE ENGINEERING, 2002, 8 (04): : 709 - 721