Hierarchical dispersion Lempel-Ziv complexity for fault diagnosis of rolling bearing

被引:7
|
作者
Li, Yongjian [1 ]
Tan, Li [1 ]
Xiao, Meng [1 ]
Xiong, Qing [2 ]
机构
[1] Wuyi Univ, Sch Railway Tracks & Transportat, Jiangmen 529020, Peoples R China
[2] Chengdu Vocat & Tech Coll Ind, Sch Intelligent Mfg & Automobile, Chengdu 610031, Peoples R China
关键词
hierarchization; dispersion entropy; Lempel-Ziv complexity; fault diagnosis; WAVELET PACKET TRANSFORM; SEVERITY ASSESSMENT; ELEMENT BEARING; ENTROPY; MACHINE;
D O I
10.1088/1361-6501/aca81b
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The fault information of rolling bearings is generally contained in vibration signals. How to efficiently unearth fault information from the raw signals is the key to detecting and evaluating the health condition of mechanical equipment. Therefore, a hierarchical dispersion Lempel-Ziv complexity (HDLZC) feature extraction method is developed in this paper to improve the accuracy of fault diagnosis. In this method, dispersion theory addresses the deficiency of Lempel-Ziv complexity, and can obtain more fault features from the raw signal. Second, the hierarchical extraction of high- and low-frequency components from time series can improve the ability to describe dynamic features. Simulations and experiments respectively demonstrate the predominance of HDLZC. The experimental results reveal that this method is significantly better than multiscale dispersive Lempel-Ziv complexity, hierarchical Lempel-Ziv complexity, multiscale dispersion entropy, and multiscale permutation entropy in extracting fault information.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Fault severity assessment for rolling element bearings using the Lempel-Ziv complexity and continuous wavelet transform
    Hong, Hoonbin
    Liang, Ming
    JOURNAL OF SOUND AND VIBRATION, 2009, 320 (1-2) : 452 - 468
  • [22] The Lempel-Ziv complexity of fixed points of morphisms
    Constantinescu, Sorin
    Ilie, Lucian
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2006, PROCEEDINGS, 2006, 4162 : 280 - 291
  • [23] ON THE BIT-COMPLEXITY OF LEMPEL-ZIV COMPRESSION
    Ferragina, Paolo
    Nitto, Igor
    Venturini, Rossano
    SIAM JOURNAL ON COMPUTING, 2013, 42 (04) : 1521 - 1541
  • [24] The Lempel-Ziv complexity in infinite ergodic systems
    Shinkai, Soya
    Aizawa, Yoji
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2007, 50 (01) : 261 - 266
  • [25] Characterizing spike trains with Lempel-Ziv complexity
    Szczepanski, J
    Amigó, JM
    Wajnryb, E
    Sanchez-Vives, M
    COMPUTATIONAL NEUROSCIENCE: TRENDS IN RESEARCH 2004, 2004, : 79 - 84
  • [26] Lempel-Ziv complexity in schizophrenia: A MEG study
    Fernandez, Alberto
    Lopez-Ibor, Maria-Ines
    Turrero, Agustin
    Santos, Juan-Matias
    Moron, Maria-Dolores
    Hornero, Roberto
    Gomez, Carlos
    Andreina Mendez, Maria
    Ortiz, Tomas
    Jose Lopez-Ibor, Juan
    CLINICAL NEUROPHYSIOLOGY, 2011, 122 (11) : 2227 - 2235
  • [27] On Lempel-Ziv complexity for multidimensional data analysis
    Zozor, S
    Ravier, P
    Buttellic, O
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 345 (1-2) : 285 - 302
  • [28] Characterizing spike trains with Lempel-Ziv complexity
    Szczepanski, J
    Amigó, JM
    Wajnryb, E
    Sanchez-Vives, A
    NEUROCOMPUTING, 2004, 58 : 79 - 84
  • [29] The lempel-ziv complexity of fixed points of morphisms
    Constantinescu, Sorin
    Ilie, Lucian
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (02) : 466 - 481
  • [30] Multiscale Lempel-Ziv complexity for EEG measures
    Ibanez-Molina, Antonio J.
    Iglesias-Parro, Sergio
    Soriano, Maria F.
    Aznarte, Jose I.
    CLINICAL NEUROPHYSIOLOGY, 2015, 126 (03) : 541 - 548