Amoeboid soft robot based on multi-material composite 3D printing technology

被引:4
|
作者
Deng, Chengyao [1 ,2 ,3 ]
Dong, Jiahao [1 ]
Guo, Yifei [4 ]
Sun, Xudong [4 ]
Song, Zhongru [5 ]
Li, Zhenkun [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Mech Elect & Control Engn, Beijing 100044, Peoples R China
[2] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] North China Univ Sci & Technol, Dept Mech Engn, Tangshan 063210, Peoples R China
[5] Hebei Ind Robot Ind Technol Res Inst, Tangshan 063000, Peoples R China
关键词
3D printing; Soft robot; Amoeboid locomotion; Magnetic thixotropic fluid; LOCOMOTION;
D O I
10.1016/j.jmmm.2023.171390
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A core-shell structured, amoeba-like, magnetically controlled soft robot is proposed for 3D printing using magnetically controlled smart materials and silicone materials. The purpose of this robot is to overcome the limitations of existing soft robot kinematic mechanisms that rely on the elastic deformation of flexible materials. The printability of the magnetically controlled smart material was verified through rheological tests. The effect of different component ratios on the rheological properties of the material was investigated and a suitable material ratio for printing was selected by adjusting the amount of SiO2 in the silicone and conducting rheological tests. Mechanical simulation was used to select and optimize the design of the amoeboid soft robotic shell structures. Printing was then used to verify the stability of the shell structures. The self-supporting capability of the magnetically controlled smart materials was investigated under different magnetic field strengths. To solve the problem of the phase of the magnetron smart material and the silicone material, the composite printing of the two materials was accomplished by adjusting the printing process. Soft robots mimicking amoebas were then printed and fabricated. The magnetron array-based driving method is proposed, and the magnetic field of the array used to drive the amoeba-like soft robot is constructed. The magnetic field of the array surface was then simulated under several different driving modes. Based on the simulation results, a suitable driving mode was selected. Using the material mechanism of the magnetron-only material sol-gel transformation, the pseudopod extension gait of the amoeba-like soft robot was designed, and the localized deformation of the amoeba-like soft robot was realized. This paper leveraged the distinctive properties of magnetorheological smart materials to devise and fabricate an integrated 3D-printed soft robot. Such magnetorheological smart materials can function as both the supporting framework for hollow cavities and the propelling substance for the robot. During the course of this process, we investigated material properties pertinent to 3D printing and refined the design of the robot's structure and driving mechanism.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Development and Utilization of Flexible Multi-material 3D Printing System
    Park, Jung Whan
    Lee, Junhee
    Xin, Yuan-Zhu
    Byoun, Ki-Seok
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2018, 42 (04) : 399 - 407
  • [32] Wavelength Selective Multi-Material 3D Printing of Soft Active Devices Using Orthogonal Photoreactions
    Rossegger, Elisabeth
    Strasser, Jakob
    Hoeller, Rita
    Fleisch, Mathias
    Berer, Michael
    Schloegl, Sandra
    MACROMOLECULAR RAPID COMMUNICATIONS, 2023, 44 (02)
  • [33] Simultaneous multi-material embedded printing for 3D heterogeneous structures
    Gao, Ziqi
    Yin, Jun
    Liu, Peng
    Li, Qi
    Zhang, Runan
    Yang, Huayong
    Zhou, Hongzhao
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2023, 5 (03)
  • [34] Multi-material freeform 3D printing of flexible piezoelectric composite sensors using a supporting fluid
    Tao, Rui
    Granier, Floriane
    Therriault, Daniel
    ADDITIVE MANUFACTURING, 2022, 60
  • [35] ACTIVE MIXING NOZZLE FOR MULTI-MATERIAL AND MULTI-SCALE 3D PRINTING
    Lan, Hongbo
    PROCEEDINGS OF THE ASME 12TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE - 2017, VOL 2, 2017,
  • [36] Multi-color and Multi-Material 3D Printing of Knee Joint models
    Ruiz, Oliver Grimaldo
    Dhaher, Yasin
    3D PRINTING IN MEDICINE, 2021, 7 (01)
  • [37] Multi-color and Multi-Material 3D Printing of Knee Joint models
    Oliver Grimaldo Ruiz
    Yasin Dhaher
    3D Printing in Medicine, 7
  • [38] Characterization of 3D printed multi-material soft pneumatic actuator
    Herianto, Hasan
    Mastrisiswadi, Hasan
    Atsani, Sarah Iftin
    Sari, Wangi Pandan
    Tontowi, Alva Edy
    INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS, 2024,
  • [39] Multi-material and Multi-dimensional 3D Printing for Biomedical Materials and Devices
    Jia An
    Kah Fai Leong
    Biomedical Materials & Devices, 2023, 1 (1): : 38 - 48
  • [40] VOXEL PRINTING OF A MULTI-MATERIAL 3D PRINTED PROSTHETIC SOCKET BASED ON FEM SIMULATIONS
    Pigazzi, Riccardo
    Bertolini, Michele
    Rossoni, Marco
    Colombo, Giorgio
    PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 2, 2023,