Randomized block Krylov subspace algorithms for low-rank quaternion matrix approximations

被引:4
|
作者
Li, Chaoqian [1 ]
Liu, Yonghe [1 ]
Wu, Fengsheng [1 ]
Che, Maolin [2 ]
机构
[1] Yunnan Univ, Sch Math & Stat, Kunming 650091, Peoples R China
[2] Southwestern Univ Finance & Econ, Sch Math, Chengdu 611130, Peoples R China
关键词
Low-rank quaternion matrix approximation; Quaternion singular value decomposition; Randomized quaternion singular value decomposition; Block Krylov iteration; SINGULAR-VALUE DECOMPOSITION; COLOR IMAGES; COMPLETION;
D O I
10.1007/s11075-023-01662-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A randomized quaternion singular value decomposition algorithm based on block Krylov iteration (RQSVD-BKI) is presented to solve the low-rank quaternion matrix approximation problem. The upper bounds of deterministic approximation error and expected approximation error for the RQSVD-BKI algorithm are also given. It is shown by numerical experiments that the running time of the RQSVD-BKI algorithm is smaller than that of the quaternion singular value decomposition, and the relative errors of the RQSVD-BKI algorithm are smaller than those of the randomized quaternion singular value decomposition algorithm in Liu et al. (SIAM J. Sci. Comput., 44(2): A870-A900 (2022)) in some cases. In order to further illustrate the feasibility and effectiveness of the RQSVD-BKI algorithm, we use it to deal with the problem of color image inpainting.
引用
收藏
页码:687 / 717
页数:31
相关论文
共 50 条
  • [41] Low-rank quaternion matrix completion based on approximate quaternion SVD and sparse regularizer
    Han, Juan
    Yang, Liqiao
    Kou, Kit Ian
    Miao, Jifei
    Liu, Lizhi
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 491
  • [42] KRYLOV METHODS FOR LOW-RANK REGULARIZATION
    Gazzola, Silvia
    Meng, Chang
    Nagy, James G.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (04) : 1477 - 1504
  • [43] LOW-RANK UPDATES OF MATRIX FUNCTIONS II: RATIONAL KRYLOV METHODS
    Beckermann, Bernhard
    Cortinovis, Alice
    Kressner, Daniel
    Schweitzer, Marcel
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (03) : 1325 - 1347
  • [44] Subspace Evolution and Transfer (SET) for Low-Rank Matrix Completion
    Dai, Wei
    Milenkovic, Olgica
    Kerman, Ely
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (07) : 3120 - 3132
  • [45] Error estimates for Krylov subspace approximations of matrix exponentials
    Stewart, DE
    Leyk, TS
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 72 (02) : 359 - 369
  • [46] Feature extraction using low-rank approximations of the kernel matrix
    Teixeira, A. R.
    Tome, A. M.
    Lang, E. W.
    IMAGE ANALYSIS AND RECOGNITION, PROCEEDINGS, 2008, 5112 : 404 - +
  • [47] Computing Optimal Low-Rank Matrix Approximations for Image Processing
    Chung, Julianne
    Chung, Matthias
    2013 ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2013, : 670 - 674
  • [48] Randomized algorithms for the low multilinear rank approximations of tensors
    Che, Maolin
    Wei, Yimin
    Yan, Hong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 390 (390)
  • [49] COLOR IMAGE INPAINTING BASED ON LOW-RANK QUATERNION MATRIX FACTORIZATION
    Xu, Junxia
    Chen, Yannan
    Zhang, Xinzhen
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2024, 20 (02) : 825 - 837
  • [50] COLOR IMAGE COMPLETION USING A LOW-RANK QUATERNION MATRIX APPROXIMATION
    Chen, Yannan
    Qi, Liqun
    Zhang, Xinzhen
    PACIFIC JOURNAL OF OPTIMIZATION, 2022, 18 (01): : 55 - 75