EFFICIENT ALGEBRAIC TWO-LEVEL SCHWARZ PRECONDITIONER FOR SPARSE MATRICES

被引:1
|
作者
Al Daas, Hussam [1 ]
Jolivet, Pierre
Rees, Tyrone [1 ,2 ]
机构
[1] Rutherford Appleton Lab, STFC, Harwell Campus, Didcot OX11 0QX, Oxon, England
[2] Sorbonne Univ, CNRS, LIP6, F-75252 Paris 05, France
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2023年 / 45卷 / 03期
关键词
algebraic domain decomposition; sparse linear systems; Schwarz preconditioner; diagonally dominant matrices; DOMAIN DECOMPOSITION PRECONDITIONER; COARSE SPACES; FETI-DP; SYSTEMS;
D O I
10.1137/22M1469833
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Domain decomposition methods are among the most efficient for solving sparse linear systems of equations. Their effectiveness relies on a judiciously chosen coarse space. Originally introduced and theoretically proved to be efficient for self-adjoint operators, spectral coarse spaces have been proposed in the past few years for indefinite and non-self-adjoint operators. This paper presents a new spectral coarse space that can be constructed in a fully algebraic way unlike most existing spectral coarse spaces. We present theoretical convergence results for Hermitian positive definite diagonally dominant matrices. Numerical experiments and comparison against state-of-the-art preconditioners in the multigrid community show that the resulting two-level Schwarz preconditioner is efficient especially for non-self-adjoint operators. Furthermore, in this case, our proposed preconditioner outperforms state-of-the-art preconditioners.
引用
收藏
页码:A1199 / A1213
页数:15
相关论文
共 50 条
  • [21] A fully coupled two-level Schwarz preconditioner based on smoothed aggregation for the transient multigroup neutron diffusion equations
    Kong, Fande
    Wang, Yaqi
    Schunert, Sebastian
    Peterson, John W.
    Permann, Cody J.
    Andrs, David
    Martineau, Richard C.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (03)
  • [22] A FULLY ALGEBRAIC AND ROBUST TWO-LEVEL SCHWARZ METHOD BASED ON OPTIMAL LOCAL APPROXIMATION SPACES
    Heinlein, Alexander
    Smetana, Kathrin
    arXiv, 2022,
  • [23] Algebraic two-level measure trees
    Nussbaumer, Josue
    Tran, Viet Chi
    Winter, Anita
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [24] TWO-LEVEL ADDITIVE SCHWARZ PRECONDITIONERS FOR PLATE ELEMENTS
    SUSANNE C. BRENNER
    Wuhan University Journal of Natural Sciences, 1996, (Z1) : 658 - 667
  • [25] Versatile Two-Level Schwarz Preconditioners for Multiphase Flow
    C.E. Kees
    C.T. Miller
    E.W. Jenkins
    C.T. Kelley
    Computational Geosciences, 2003, 7 : 91 - 114
  • [26] Versatile two-level Schwarz preconditioners for multiphase flow
    Kees, CE
    Miller, CT
    Jenkins, EW
    Kelley, CT
    COMPUTATIONAL GEOSCIENCES, 2003, 7 (02) : 91 - 114
  • [27] Two-level Schwarz method for unilateral variational inequalities
    Tarvainen, P
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1999, 19 (02) : 273 - 290
  • [28] A robust two-level domain decomposition preconditioner for systems of PDEs
    Spillane, Nicole
    Dolean, Victorita
    Hauret, Patrice
    Nataf, Frederic
    Pechstein, Clemens
    Scheichl, Robert
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (23-24) : 1255 - 1259
  • [29] FIELD OF VALUES ANALYSIS OF A TWO-LEVEL PRECONDITIONER FOR THE HELMHOLTZ EQUATION
    Hannukainen, Antti
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (03) : 1567 - 1584
  • [30] A ROBUST ALGEBRAIC MULTILEVEL DOMAIN DECOMPOSITION PRECONDITIONER FOR SPARSE SYMMETRIC POSITIVE DEFINITE MATRICES\ast
    Daas, Hussam Al
    Jolivet, Pierre
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (04): : A2582 - A2598