Assessment of atmospheric heavy metal pollution in Qinghai-Tibet Plateau: Using mosses as biomonitor

被引:13
|
作者
Lv, Dongwei [1 ]
Liu, Yixuan [1 ]
Ren, Liang [1 ]
Huo, Jiaxuan [2 ]
Zhao, Jin [2 ]
Lu, Ruijie [2 ]
Huang, Yongmei [2 ]
Duan, Lei [1 ]
机构
[1] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Cont, Beijing 100084, Peoples R China
[2] Beijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
关键词
Moss; Heavy metal pollution; Spatial distribution; Atmospheric deposition; Qinghai-Tibet plateau; ELEMENTAL COMPOSITION; TEMPORAL TRENDS; TRACE-ELEMENTS; CLIMATE-CHANGE; DEPOSITION; CONTAMINATION; ACCUMULATION; CHINA; SOILS; LEAD;
D O I
10.1016/j.jhazmat.2023.132181
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Atmospheric heavy metal (HM) pollution may pose a significant threat to the fragile ecosystem of Qinghai-Tibet Plateau (QTP). To investigate potential atmospheric HM pollution within the QTP region of China, mosses, along with other higher plants and soil, were collected from 33 sites for heavy metal measurement. The concentration ranges of Zn, Pb, Cd, and Cu in mosses were 6.07-69.9, 5.36-23.9, 0.60-1.05, and 14.4-50.5 mg.kg (-1) (dry weight), respectively, significantly higher than those in other higher plants, except for Zn. The spatial distri-bution of relative concentrations (RCs; moss to top soil) of HMs varied considerably, indicating distinct differ-ences in atmospheric Zn and Cu pollution levels between the northern and southern QTP. This study first reported that moderate regional atmospheric Cu pollution, primarily due to large-scale mining in recent years, had occurred, particularly in southern QTP. Pb also presented slight pollution due to anthropogenic activities. However, Cd showed almost no atmospheric pollution, while Zn concentrations were relatively high in southern QTP. Although less severe than atmospheric pollution levels in Chinese inland or coastal cities, the atmospheric pollution of Pb and Cu in QTP indicated by mosses were far more severe than global background areas, or even worse than most European cities.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] The electrical structure of northeastern Qinghai-Tibet plateau
    Ma, XB
    Kong, XR
    Liu, HB
    Yan, YL
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2005, 48 (03): : 689 - 697
  • [42] Tessellons, topography, and glaciations on the Qinghai-Tibet Plateau
    Harris, Stuart A.
    Jin, HuiJun
    He, RuiXia
    Yang, SiZhong
    SCIENCES IN COLD AND ARID REGIONS, 2018, 10 (03): : 187 - 206
  • [43] Plant diversity and ecology on the Qinghai-Tibet Plateau
    Liu, Jian-Quan
    Li, Jia-Liang
    Lai, Yang-Jun
    JOURNAL OF SYSTEMATICS AND EVOLUTION, 2021, 59 (06) : 1139 - 1141
  • [44] TECTONIC EVOLUTION AND UPLIFT OF THE QINGHAI-TIBET PLATEAU
    XIAO, XC
    LI, TD
    EPISODES, 1995, 18 (1-2): : 31 - 35
  • [45] Information System of the Wetlands on the Qinghai-tibet Plateau
    Wu, Huizhi
    Jiang, Qigang
    Li, Yuanhua
    Bai, Chaojun
    Jing, Ying
    JOURNAL OF COMPUTERS, 2014, 9 (12) : 2792 - 2796
  • [46] The Spatial Analysis of Monastery on the Qinghai-Tibet Plateau
    Caiji, Zhuoma
    Guo, Luo
    Xue, Dayuan
    Du, Yuhuan
    PROCEEDINGS OF THE 2015 INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE, 2015, 7 : 37 - 41
  • [47] Pressuremeter test in permafrost on the Qinghai-Tibet plateau
    Yu, WB
    Zhu, YLL
    Lai, YM
    Zhang, JM
    Zhang, XF
    Li, HP
    Zhang, SJ
    PERMAFROST, VOLS 1 AND 2, 2003, : 1277 - 1281
  • [48] Quaternary Faulting in North Qinghai-Tibet Plateau
    Zhao Guoguang(Institute of Crustal Dynamics
    CONTINENTAL DYNAMICS, 1996, (01) : 30 - 37
  • [49] Tessellons, topography, and glaciations on the Qinghai-Tibet Plateau
    Stuart A.Harris
    Hui Jun Jin
    Rui Xia He
    Si Zhong Yang
    Sciences in Cold and Arid Regions, 2018, 10 (03) : 187 - 206
  • [50] Measuring Qinghai-Tibet plateau?s sustainability
    Fan, Yupeng
    Fang, Chuanglin
    SUSTAINABLE CITIES AND SOCIETY, 2022, 85