Grapharizer: A Graph-Based Technique for Extractive Multi-Document Summarization

被引:6
|
作者
Jalil, Zakia [1 ]
Nasir, Muhammad [2 ]
Alazab, Moutaz [3 ]
Nasir, Jamal [4 ]
Amjad, Tehmina [1 ]
Alqammaz, Abdullah [5 ]
机构
[1] Int Islamic Univ, Dept Comp Sci, Islamabad 44000, Pakistan
[2] Int Islamic Univ, Dept Software Engn, Islamabad 44000, Pakistan
[3] Al Balqa Appl Univ, Fac Artificial Intelligence, Dept Intelligent Syst, Salt 19117, Jordan
[4] Univ Galway, Sch Comp Sci, Galway H91TK33, Ireland
[5] Zarqa Univ, Coll Informat Technol, Dept Cyber Secur, Zarqa 13110, Jordan
关键词
big data; automatic text summarization; extractive multi-document summarization; graph theory; machine learning; anaphora; cataphora; pronoun resolution; grammaticality; topic modeling; ChatGPT; TEXT; SEARCH;
D O I
10.3390/electronics12081895
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Featured Application A graph-based technique tested on a benchmark dataset and augmented by machine learning techniques to provide a concise, informative, and grammatically correct summary. In the age of big data, there is increasing growth of data on the Internet. It becomes frustrating for users to locate the desired data. Therefore, text summarization emerges as a solution to this problem. It summarizes and presents the users with the gist of the provided documents. However, summarizer systems face challenges, such as poor grammaticality, missing important information, and redundancy, particularly in multi-document summarization. This study involves the development of a graph-based extractive generic MDS technique, named Grapharizer (GRAPH-based summARIZER), focusing on resolving these challenges. Grapharizer addresses the grammaticality problems of the summary using lemmatization during pre-processing. Furthermore, synonym mapping, multi-word expression mapping, and anaphora and cataphora resolution, contribute positively to improving the grammaticality of the generated summary. Challenges, such as redundancy and proper coverage of all topics, are dealt with to achieve informativity and representativeness. Grapharizer is a novel approach which can also be used in combination with different machine learning models. The system was tested on DUC 2004 and Recent News Article datasets against various state-of-the-art techniques. Use of Grapharizer with machine learning increased accuracy by up to 23.05% compared with different baseline techniques on ROUGE scores. Expert evaluation of the proposed system indicated the accuracy to be more than 55%.
引用
收藏
页数:26
相关论文
共 50 条
  • [11] Intelligent multi-document summarization for biomedical literature by word embeddings and graph-based ranking
    Shen, Chen
    Lin, Hongfei
    Hao, Huihui
    Yang, Zhihao
    Wang, Jian
    Zhang, Shaowu
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (04) : 4797 - 4802
  • [12] A Graph Based Query Focused Multi-Document Summarization
    Balaji, J.
    Geetha, T.
    Parthasarathi, Ranjani
    INTERNATIONAL JOURNAL OF INTELLIGENT INFORMATION TECHNOLOGIES, 2014, 10 (01) : 16 - 41
  • [13] Topic modeling combined with classification technique for extractive multi-document text summarization
    Rajendra Kumar Roul
    Soft Computing, 2021, 25 : 1113 - 1127
  • [14] Topic modeling combined with classification technique for extractive multi-document text summarization
    Roul, Rajendra Kumar
    SOFT COMPUTING, 2021, 25 (02) : 1113 - 1127
  • [15] Extractive multi-document summarization using multilayer networks
    Tohalino, Jorge V.
    Amancio, Diego R.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 503 : 526 - 539
  • [16] Unsupervised Framework for Comment-based Multi-document Extractive Summarization
    Roha, Vishal Singh
    Saini, Naveen
    Saha, Sriparna
    Moreno, Jose G.
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 574 - 582
  • [17] An Optimization Algorithm for Extractive Multi-document Summarization Based on Association of Sentences
    Chen, Chun-Hao
    Yang, Yi-Chen
    Lin, Jerry Chun-Wei
    ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE: THEORY AND PRACTICES IN ARTIFICIAL INTELLIGENCE, 2022, 13343 : 460 - 469
  • [18] An Approach for Combining Multiple Weighting Schemes and Ranking Methods in Graph-Based Multi-Document Summarization
    Alzuhair, Abeer
    Al-Dhelaan, Mohammed
    IEEE ACCESS, 2019, 7 : 120375 - 120386
  • [19] Using query expansion in graph-based approach for query-focused multi-document summarization
    Zhao, Lin
    Wu, Lide
    Huang, Xuanjing
    INFORMATION PROCESSING & MANAGEMENT, 2009, 45 (01) : 35 - 41
  • [20] Automatic Multi-Document Summarization for Indonesian Documents Using Hybrid Abstractive-Extractive Summarization Technique
    Yapinus, Glorian
    Erwin, Alva
    Galinium, Maulahikmah
    Muliady, Wahyu
    2014 6TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ICITEE), 2014, : 39 - 43