Gradient microporous layer with controllable aperture for high-performance proton-exchange membrane fuel cells

被引:7
|
作者
Guo, Jie [1 ]
Wang, Wei [1 ]
Shi, Ruhua [1 ]
Gu, Tainyi [1 ]
Wei, Xian [1 ]
Zhao, Jiaqing [1 ]
Chao, Ming [1 ]
Zhang, Qian [1 ]
Yang, Ruizhi [1 ]
机构
[1] Soochow Univ, Soochow Inst Energy & Mat Innovat, Coll Energy, Key Lab Adv Carbon Mat & Wearable Energy Technol J, Suzhou 215006, Peoples R China
基金
国家重点研发计划;
关键词
GAS-DIFFUSION LAYER; MICRO-POROUS LAYER; LIQUID WATER; CARBON; TRANSPORT; SILANE; SITU;
D O I
10.1007/s10853-024-09467-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A microporous layer (MPL) with appropriate aperture and hydrophobicity is key for proton-exchange membrane fuel cells (PEMFCs). The MPLs are typically prepared from mixing carbon black and a hydrophobic agent (i.e., polytetrafluoroethylene) physically followed by annealing at elevated temperatures, resulting in pore blockage and carbon black aggregation. To address this issue, we report a facile method to fabricate uniform porous carbons (UPCs) with single aperture and hierarchical porous carbon (HPC) with multiple apertures using a hard silica template followed by chemical grafting with hydrophobic fluoroalkylsilane (FAS-17). An advanced MPL (GMPL) is fabricated by direct layer-by-layer construction of hydrophobic UPC with different apertures, demonstrating improved water drainage and efficient gas transportation, thereby delivering high output power density of 809.64 mW center dot cm-2. The as-fabricated GMPL demonstrates superior performance as compared to the one containing MPL prepared with HPC (HPC-MPL, 781.20 mW center dot cm-2) and the ones employing MPL with a single aperture (714.38-749.89 mW center dot cm-2). The controllable gradient aperture, superhydrophobicity, and open pore/channels contribute to the high performance of PFMFC. This work presents a feasible structural design for MPLs toward high-performance PEMFC.
引用
收藏
页码:3561 / 3572
页数:12
相关论文
共 50 条
  • [31] Optimization of assembly clamping pressure on performance of proton-exchange membrane fuel cells
    Xing, Xiu Qing
    Lum, Kah Wai
    Poh, Hee Joo
    Wu, Yan Ling
    JOURNAL OF POWER SOURCES, 2010, 195 (01) : 62 - 68
  • [32] Effect of oxygen storage materials on the performance of proton-exchange membrane fuel cells
    Xu, ZQ
    Qi, ZG
    Kaufman, A
    JOURNAL OF POWER SOURCES, 2003, 115 (01) : 40 - 43
  • [33] Modulation of transport at the interface in the microporous layer for high power density proton exchange membrane fuel cells
    Wu, Ningran
    Liu, Ye
    Zhang, Shengping
    Hou, Dandan
    Yang, Ruizhi
    Qi, Yue
    Wang, Luda
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 657 : 428 - 437
  • [34] Optimal microporous layer for proton exchange membrane fuel cell
    Yan, Wei-Mon
    Wu, Dong-Kai
    Wang, Xiao-Dong
    Ong, Ai-Lien
    Lee, Duu-Jong
    Su, Ay
    JOURNAL OF POWER SOURCES, 2010, 195 (17) : 5731 - 5734
  • [35] Stacked microporous layers with a rational gradient in pore size enhance the performance of proton exchange membrane fuel cells
    Zhang, Haihang
    Peng, Keyu
    Dong, Juyuan
    Zhang, Lin
    Duan, Hao
    Zhao, Chongxue
    Lin, Guangyi
    Journal of Applied Electrochemistry, 2024,
  • [36] Stacked microporous layers with a rational gradient in pore size enhance the performance of proton exchange membrane fuel cells
    Zhang, Haihang
    Peng, Keyu
    Dong, Juyuan
    Zhang, Lin
    Duan, Hao
    Zhao, Chongxue
    Lin, Guangyi
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2025, 55 (03) : 649 - 664
  • [37] HIGH-POWER DENSITY PROTON-EXCHANGE MEMBRANE FUEL-CELLS
    MURPHY, OJ
    HITCHENS, GD
    MANKO, DJ
    JOURNAL OF POWER SOURCES, 1994, 47 (03) : 353 - 368
  • [38] Optimization of the ejector parameters for anodic recirculation systems in high-performance dual-stack proton-exchange membrane fuel cells
    Tri, Dat Truong Le
    Vu, Hoang Nghia
    Woo, Jongbin
    Kim, Younghyeon
    Yu, Sangseok
    ENERGY CONVERSION AND MANAGEMENT, 2023, 296
  • [39] Reducing Irreversible Performance Losses via a Graphene Oxide Buffer Layer for Proton-Exchange Membrane Fuel Cells
    Wang, Hong
    Lin, Rui
    Liu, Xin
    Liu, Shengchu
    Cai, Xin
    Ji, Weichen
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (24) : 27891 - 27901
  • [40] Assessment of graphene as an alternative microporous layer material for proton exchange membrane fuel cells
    Ozden, Adnan
    Shahgaldi, Samaneh
    Zhao, Jian
    Li, Xianguo
    Hamdullahpur, Feridun
    FUEL, 2018, 215 : 726 - 734