Electrocardiogram-based deep learning model to screen peripartum cardiomyopathy

被引:2
|
作者
Jung, Young Mi [1 ,2 ,3 ]
Kang, Sora [3 ]
Son, Jeong Min [3 ]
Lee, Hak Seung [3 ]
Han, Ga In [3 ]
Yoo, Ah-Hyun [3 ]
Kwon, Joon-myoung [3 ]
Park, Chan-Wook [1 ]
Park, Joong Shin [1 ]
Jun, Jong Kwan [1 ]
Lee, Min Sung [1 ,2 ,3 ]
Lee, Seung Mi [2 ,3 ,4 ]
机构
[1] Seoul Natl Univ Hosp, Dept Obstet & Gynecol, Seoul, South Korea
[2] Seoul Natl Univ, Coll Med, Dept Obstet & Gynecol, Seoul, South Korea
[3] Seoul Natl Univ Hosp, Innovat Med Technol Res Inst, Seoul, South Korea
[4] Seoul Natl Univ, Inst Reprod Med & Populat, Med Res Ctr, Seoul, South Korea
关键词
artificial intelligence/machine learning model; electrocardi-ography; heart disease; left ventricular systolic dysfunction; peripartum cardiomyopathy; ARTIFICIAL-INTELLIGENCE; WEARABLE DEVICES; HEART; STATE;
D O I
10.1016/j.ajogmf.2023.101184
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
BACKGROUND: Peripartum cardiomyopathy, one of the most fatal conditions during delivery, results in heart failure secondary to left ventricu-lar systolic dysfunction. Left ventricular dysfunction can result in abnormali-ties in electrocardiography. However, the usefulness of electrocardiography in the identification of peripartum cardiomyopathy in pregnant women remains unclear.OBJECTIVE: This study aimed to evaluate the effectiveness of a 12-lead electrocardiography-based artificial intelligence/machine learning-based software as a medical device for screening peripartum cardiomyopathy.STUDY DESIGN: This retrospective cohort study included pregnant women who underwent transthoracic echocardiography between a month before and 5 months after delivery and underwent 12-lead electrocardiog-raphy within 30 days of echocardiography between December 2011 and May 2022 at Seoul National University Hospital. The performance of 12-lead electrocardiography-based artificial intelligence/machine learn-ing analysis (AiTiALVSD software; version 1.00.00, which was developed to screen for left ventricular systolic dysfunction in the general population) was evaluated for the identification of peripartum cardiomyopathy. In addi-tion, the performance of another artificial intelligence/machine learning algorithm using only 1-lead electrocardiography to detect left ventricular systolic dysfunction was evaluated in identifying peripartum cardiomyopa-thy. The results were obtained under a 95% confidence interval and considered significant when P<.05.RESULTS: Among the 14,557 women who delivered during the study period, 204 (1.4%) underwent transthoracic echocardiography a month before and 5 months after delivery. Among them, 12 (5.8%) were diagnosed with peripartum cardiomyopathy. The results showed that AiTiALVSD for 12-lead electrocardiography was highly effective in detect-ing peripartum cardiomyopathy, with an area under the receiver operating characteristic of 0.979 (95% confidence interval, 0.953-1.000), an area under the precision-recall curve of 0.715 (95% confidence interval, 0.499-0.951), a sensitivity of 0.917 (95% confidence interval, 0.760-1.000), a specificity of 0.927 (95% confidence interval, 0.890-0.964), a positive predictive value of 0.440 (95% confidence interval, 0.245-0.635), and a negative predictive value of 0.994 (95% confidence interval, 0.983-1.000). In addition, a 1-lead (lead I) artificial intelligence/machine learning algorithm showed excellent performance; the area under the receiver operating characteristic, area under the preci-sion-recall curve, sensitivity, specificity, positive predictive value, and neg-ative predictive value were 0.944 (95% confidence interval, 0.895 -0.993), 0.520 (95% confidence interval, 0.319-0.801), 0.833 (95% confidence interval, 0.622-1.000), 0.880 (95% confidence interval, 0.834-0.926), 0.303 (95% confidence interval, 0.146-0.460), and 0.988 (95% confidence interval, 0.972-1.000), respectively.CONCLUSION: The 12-lead electrocardiography-based artificial intelligence/machine learning-based software as a medical device (AiTiALVSD) and 1-lead algorithm are noninvasive and effective ways of identifying cardiomyopathies occurring during the peripartum period, and they could potentially be used as highly sensitive screening tools for peripartum cardiomyopathy.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] An Electrocardiogram-based Authentication Implementation Integrated with the Blockchain
    Pioner, Mateus Sturmer
    Ignaczak, Luciano
    Dalmazo, Bruno L.
    da Silva Junior, Elvandi
    Nobre, Jeferson Campos
    2021 IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK MANAGEMENT (IM 2021), 2021, : 974 - 979
  • [32] Electrocardiogram-based heart disease prediction using hybrid deep feature engineering with sequential deep classifier
    Golande A.L.
    Pavankumar T.
    Multimedia Tools and Applications, 2025, 84 (10) : 7443 - 7475
  • [33] Electrocardiogram-based separation of boys from girls
    Macfarlane, PW
    Biersack, M
    Mohammad, S
    Jenkins, J
    EUROPEAN HEART JOURNAL, 2003, 24 : 512 - 512
  • [34] Predicting Life-Threatening Ventricular Arrhythmias in Patients with Non-Ischemic Dilated Cardiomyopathy Using Electrocardiogram-Based Deep Neural Networks
    Sammani, Arjan
    Leur, Rutger R.
    Meine, Mathias
    Loh, Peter
    Hassink, Rutger J.
    Oberski, Daniel L.
    Henkens, Michiel T.
    Heymans, Stephane
    Doevendans, Pieter
    te Riele, Anneline S.
    van Es, Rene
    Asselbergs, Folkert W.
    CIRCULATION, 2021, 144
  • [35] An artificial intelligence electrocardiogram analysis for detecting cardiomyopathy in the peripartum period
    Lee, Yeji
    Choi, Byungjin
    Lee, Min Sung
    Jin, Uram
    Yoon, Seokyoung
    Jo, Yong-Yeon
    Kwon, Joon-myoung
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2022, 352 : 72 - 77
  • [36] Electrocardiogram-based machine learning for risk stratification of patients with suspected acute coronary syndrome
    Bouzid, Zeineb
    Sejdic, Ervin
    Martin-Gill, Christian
    Faramand, Ziad
    Frisch, Stephanie
    Alrawashdeh, Mohammad
    Helman, Stephanie
    Gokhale, Tanmay A.
    Riek, Nathan T.
    Kraevsky-Phillips, Karina
    Gregg, Richard E.
    Sereika, Susan M.
    Clermont, Gilles
    Akcakaya, Murat
    Zegre-Hemsey, Jessica K.
    Saba, Samir
    Callaway, Clifton W.
    Al-Zaiti, Salah S.
    EUROPEAN HEART JOURNAL, 2025, 46 (10) : 943 - 954
  • [37] Development of a toolbox for electrocardiogram-based interpretation of atrial fibrillation
    Abaecherli, Roger
    Leber, Remo
    Lemay, Mathieu
    Vesin, Jean-Marc
    van Oosterom, Adriaan
    Schmid, Hans-Jakob
    Kappenberger, Lukas
    JOURNAL OF ELECTROCARDIOLOGY, 2009, 42 (06) : 517 - 521
  • [38] Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning
    R. R. van de Leur
    H. Bleijendaal
    K. Taha
    T. Mast
    J. M. I. H. Gho
    M. Linschoten
    B. van Rees
    M. T. H. M. Henkens
    S. Heymans
    N. Sturkenboom
    R. A. Tio
    J. A. Offerhaus
    W. L. Bor
    M. Maarse
    H. E. Haerkens-Arends
    M. Z. H. Kolk
    A. C. J. van der Lingen
    J. J. Selder
    E. E. Wierda
    P. F. M. M. van Bergen
    M. M. Winter
    A. H. Zwinderman
    P. A. Doevendans
    P. van der Harst
    Y. M. Pinto
    F. W. Asselbergs
    R. van Es
    F. V. Y. Tjong
    Netherlands Heart Journal, 2022, 30 : 312 - 318
  • [39] Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning
    van de Leur, R. R.
    Bleijendaal, H.
    Taha, K.
    Mast, T.
    Gho, J. M. I. H.
    Linschoten, M.
    van Rees, B.
    Henkens, M. T. H. M.
    Heymans, S.
    Sturkenboom, N.
    Tio, R. A.
    Offerhaus, J. A.
    Bor, W. L.
    Maarse, M.
    Haerkens-Arends, H. E.
    Kolk, M. Z. H.
    van der Lingen, A. C. J.
    Selder, J. J.
    Wierda, E. E.
    van Bergen, P. F. M. M.
    Winter, M. M.
    Zwinderman, A. H.
    Doevendans, P. A.
    van der Harst, P.
    Pinto, Y. M.
    Asselbergs, F. W.
    van Es, R.
    Tjong, F. V. Y.
    NETHERLANDS HEART JOURNAL, 2022, 30 (06) : 312 - 318
  • [40] Electrocardiogram-based pulse prediction during cardiopulmonary resuscitation
    Kwok, Heemun
    Coult, Jason
    Blackwood, Jennifer
    Bhandari, Shiv
    Kudenchuk, Peter
    Rea, Thomas
    RESUSCITATION, 2020, 147 : 104 - 111