Dynamic lifetime prediction using a Weibull-based bivariate failure time model: a meta-analysis of individual-patient data

被引:10
|
作者
Shinohara, Sayaka [1 ]
Lin, Yuan-Hsin [2 ]
Michimae, Hirofumi [1 ]
Emura, Takeshi [2 ]
机构
[1] Kitasato Univ, Dept Clin Med Biostat, Tokyo, Japan
[2] Chang Gung Univ, Dept Informat Management, Taoyuan, Taiwan
关键词
Copula; Increasing hazard rate; Residual life; Semi-competing risk; Weibull probability plot;
D O I
10.1080/03610918.2020.1855449
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Predicting time-to-death for patients is one of the most important issues in survival analysis. A dynamic prediction method using a bivariate failure time model allows one to build a prediction formula based on tumor progression status observed during the follow-up. However, the existing spline models for the baseline hazard functions are not convenient for predicting long-term survival probability exceeding the largest follow-up time. Therefore, we proposed a parametric method based on the Weibull model to achieve long-term prediction. The present study aims to develop a prediction formula based on a Weibull-based bivariate failure time model, which is designed for individual patient data meta-analysis. We also consider prediction of residual life expectancy that is not possible by the nonparametric models. We conducted Monte Carlo simulations to compare the performance of the proposed model with the spline model. In addition, we illustrate the proposed methods through the analysis of breast cancer patients.
引用
收藏
页码:349 / 368
页数:20
相关论文
共 50 条
  • [31] Prospective meta-analysis using individual patient data in intensive care medicine
    Reade, Michael C.
    Delaney, Anthony
    Bailey, Michael J.
    Harrison, David A.
    Yealy, Donald M.
    Jones, Peter G.
    Rowan, Kathryn M.
    Bellomo, Rinaldo
    Angus, Derek C.
    INTENSIVE CARE MEDICINE, 2010, 36 (01) : 11 - 21
  • [32] Practical methodology of meta-analysis of individual patient data using a survival outcome
    Katsahian, Sandrine
    Latouche, Aurelien
    Mary, Jean-Yves
    Chevret, Sylvie
    Porcher, Raphael
    CONTEMPORARY CLINICAL TRIALS, 2008, 29 (02) : 220 - 230
  • [33] Prospective meta-analysis using individual patient data in intensive care medicine
    Michael C. Reade
    Anthony Delaney
    Michael J. Bailey
    David A. Harrison
    Donald M. Yealy
    Peter G. Jones
    Kathryn M. Rowan
    Rinaldo Bellomo
    Derek C. Angus
    Intensive Care Medicine, 2010, 36 : 11 - 21
  • [34] Prehospital Noninvasive Ventilation for Acute Respiratory Failure: Systematic Review, Network Meta-analysis, and Individual Patient Data Meta-analysis
    Goodacre, Steve
    Stevens, John W.
    Pandor, Abdullah
    Poku, Edith
    Ren, Shijie
    Cantrell, Anna
    Bounes, Vincent
    Mas, Arantxa
    Payen, Didier
    Petrie, David
    Roessler, Markus Soeren
    Weitz, Gunther
    Ducros, Laurent
    Plaisance, Patrick
    ACADEMIC EMERGENCY MEDICINE, 2014, 21 (09) : 960 - 970
  • [35] Erythropoietin or Darbepoetin for patients with cancer - meta-analysis based on individual patient data
    Bohlius, Julia
    Schmidlin, Kurt
    Brillant, Corinne
    Schwarzer, Guido
    Trelle, Sven
    Seidenfeld, Jerome
    Zwahlen, Marcel
    Clarke, Mike J.
    Weingart, Olaf
    Kluge, Sabine
    Piper, Margaret
    Napoli, Maryann
    Rades, Dirk
    Steensma, David
    Djulbegovic, Benjamin
    Fey, Martin F.
    Ray-Coquard, Isabelle
    Moebus, Volker
    Thomas, Gillian
    Untch, Michael
    Schumacher, Martin
    Egger, Matthias
    Engert, Andreas
    COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2009, (03):
  • [36] Meta-analysis based on individual patient data: example of advanced colorectal cancer
    Piedbois, Pascal
    Buyse, Marc
    RECHERCHE EN SOINS INFIRMIERS, 2010, (101): : 25 - 28
  • [37] Wells Rule and D-Dimer Testing to Rule Out Pulmonary Embolism A Systematic Review and Individual-Patient Data Meta-analysis
    van Es, Nick
    van der Hulle, Tom
    van Es, Josien
    den Exter, Paul L.
    Douma, Renee A.
    Goekoop, Robbert J.
    Mos, Inge C. M.
    Galipienzo, Javier
    Kamphuisen, Pieter W.
    Huisman, Menno V.
    Klok, Frederikus A.
    Buller, Harry R.
    Bossuyt, Patrick M.
    ANNALS OF INTERNAL MEDICINE, 2016, 165 (04) : 253 - +
  • [38] Predictors of Emesis and Recovery Agitation With Emergency Department Ketamine Sedation: An Individual-Patient Data Meta-Analysis of 8,282 Children
    Green, Steven M.
    Roback, Mark G.
    Krauss, Baruch
    Brown, Lance
    McGlone, Ray G.
    Agrawal, Dewesh
    McKee, Michele
    Weiss, Markus
    Pitetti, Raymond D.
    Hostetler, Mark A.
    Wathen, Joe E.
    Treston, Greg
    Pena, Barbara M. Garcia
    Gerber, Andreas C.
    Losek, Joseph D.
    ANNALS OF EMERGENCY MEDICINE, 2009, 54 (02) : 171 - 180
  • [39] Failure Rate Prediction Model of Substation Equipment Based on Weibull Distribution and Time Series Analysis
    Wang, Jingjing
    Yin, Hui
    IEEE ACCESS, 2019, 7 : 85298 - 85309
  • [40] Statistical Analysis of Bivariate Failure Time Data Based on Bathtub-Shaped Failure Rate Model
    Shoaee, Shirin
    JIRSS-JOURNAL OF THE IRANIAN STATISTICAL SOCIETY, 2019, 18 (01): : 53 - 87