High-performance, stable buffer-layer-free La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte-supported solid oxide cell with a nanostructured nickel-based hydrogen electrode

被引:11
|
作者
Qian, Jiaqi [1 ]
Lin, Changgen [1 ]
Chen, Zhiyi [1 ]
Huang, Jiongyuan [1 ]
Ai, Na [2 ]
Jiang, San Ping [3 ,4 ]
Zhou, Xiaoliang [5 ]
Wang, Xin [1 ]
Shao, Yanqun [1 ]
Chen, Kongfa [1 ]
机构
[1] Fuzhou Univ, Coll Mat Sci & Engn, Fuzhou 350108, Fujian, Peoples R China
[2] Fuzhou Univ, Fujian Coll Assoc Instrumental Anal Ctr, Fuzhou 350108, Fujian, Peoples R China
[3] Guangdong Lab, Foshan Xianhu Lab Adv Energy Sci & Technol, Foshan 528216, Guangdong, Peoples R China
[4] Curtin Univ, WA Sch Mines Minerals Energy & Chem Engn, Perth, WA 6102, Australia
[5] Southwest Petr Univ, Coll Chem & Chem Engn, Chengdu 610500, Peoples R China
基金
中国国家自然科学基金;
关键词
Sintering; -free; Buffer; -layer; Nanostructure; Interface formation; Elemental interdiffusion; DOPED LAGAO3; FUEL-CELLS; ANODE; CATHODES; SR;
D O I
10.1016/j.apcatb.2024.123742
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) with an extraordinary oxygen-ion conductivity has been extensively studied as an electrolyte material for intermediate temperature solid oxide cells (SOCs). However, the conventional hightemperature sintering process of electrodes results in detrimental reaction between LSGM and Ni-based hydrogen electrode and microstructural coarsening of the electrode. Herein, a buffer-layer-free LSGM electrolyte-supported single cell with a nanostructured Ni-Gd0.1Ce0.9O1.95 (GDC) electrode is developed using a sintering-free fabrication approach. The cell exhibits a peak power density of 1.23 W cm-2 at 800 degrees C and an electrolysis current density of 1.85 A cm-2 at 1.5 V with excellent operating stability. The good performance and durability is owing to the synergistic effects of the elimination of elemental interdiffusion at the electrode/ electrolyte interface, polarization induced in situ formation of hetero-interfaces between Ni-GDC and LSGM, and remarkable structural stability of Ni-GDC. This study provides an innovative means for the development of efficient and durable buffer-layer-free LSGM-supported SOCs.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Synthesis and structural properties of Fe doped La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) as solid electrolyte for solid oxide fuel cell
    Rusmiati
    Prijamboedi, B.
    Ismunandar
    NEUTRON AND X-RAY SCATTERING IN MATERIALS SCIENCE AND BIOLOGY, 2008, 989 : 172 - +
  • [32] Preparation of dense La0.9Sr0.1Ga0.8Mg0.2O3-δ with high ionic conductivity by solid-state synthesis
    Reis, S. L.
    Muccillo, E. N. S.
    IONICS, 2018, 24 (06) : 1693 - 1700
  • [33] Preparation of dense La0.9Sr0.1Ga0.8Mg0.2O3-δ with high ionic conductivity by solid-state synthesis
    S. L. Reis
    E. N. S. Muccillo
    Ionics, 2018, 24 : 1693 - 1700
  • [34] La0.9Sr0.1Ga0.8Mg0.2O3-δ-La0.6Sr0.4Co0.2Fe0.8O3-θ composite cathodes for intermediate-temperature solid oxide fuel cells
    Lin, Yuanbo
    Barnett, Scott A.
    SOLID STATE IONICS, 2008, 179 (11-12) : 420 - 427
  • [35] La2NiO4+δ potential cathode material on La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte for intermediate temperature solid oxide fuel cell
    Jose Escudero, Maria
    Fuerte, Araceli
    Daza, Loreto
    JOURNAL OF POWER SOURCES, 2011, 196 (17) : 7245 - 7250
  • [36] Electrode reaction of La1-xSrxCoO3-d cathodes on La0.8Sr0.2Ga0.8Mg0.2O3-y electrolyte in solid oxide fuel cells
    Horita, T
    Yamaji, K
    Sakai, N
    Yokokawa, H
    Weber, A
    Ivers-Tiffée, E
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (05) : A456 - A462
  • [37] Operational Inhomogeneities in La0.9Sr0.1Ga0.8Mg0.2O3-δ Electrolytes and La0.8Sr0.2Cr0.82Ru0.18O3-δ-Ce0.9Gd0.1O2-δ Composite Anodes for Solid Oxide Fuel Cells
    Liao, Y.
    Bierschenk, D. M.
    Barnett, S. A.
    Marks, L. D.
    FUEL CELLS, 2011, 11 (05) : 635 - 641
  • [38] Performance and stability of La2NiO4-infiltrated La0.9Sr0.1Ga0.8Mg0.2O3 oxygen electrodes during current switched life testing
    Railsback, Justin
    Barnett, Scott A.
    JOURNAL OF POWER SOURCES, 2018, 395 : 1 - 7
  • [39] High-performance anode-supported solid oxide fuel cells with co-fired Sm0.2Ce0.8O2-δ/ La0.8Sr0.2Ga0.8Mg0.2O3-δ/Sm0.2Ce0.8O2-δ sandwiched electrolyte
    Wang, Sea-Fue
    Lu, Hsi-Chuan
    Hsu, Yung-Fu
    Jasinski, Piotr
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (08) : 5429 - 5438
  • [40] Synthesis and characterization of La0.9Sr0.1Ga0.8Mg0.2O3-δ intermediate-temperature electrolyte using conventional solid state reaction
    Li, Minxia
    Zhang, Yaohui
    An, Maozhong
    Lu, Zhe
    Huang, Xiqiang
    Xiao, Juncheng
    Wei, Bo
    Zhu, Xingbao
    Su, Wenhui
    JOURNAL OF POWER SOURCES, 2012, 218 : 233 - 236