A UNIFIED VIEW OF DECENTRALIZED ALGORITHMS FOR SPARSE LINEAR REGRESSION

被引:0
|
作者
Maros, Marie [1 ]
Scutari, Gesualdo [1 ]
机构
[1] Purdue Univ, Sch Ind Engn, W Lafayette, IN 47907 USA
来源
2023 IEEE 9TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, CAMSAP | 2023年
关键词
Decentralized algorithms; linear convergence; LASSO estimator; mesh networks; statistical error; DISTRIBUTED OPTIMIZATION; GRADIENT METHODS; CONVERGENCE; CONSENSUS;
D O I
10.1109/CAMSAP58249.2023.10403504
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate sparse linear regression in high-dimension via the projected LASSO estimator from distributed datasets across a network of agents. This model enables the ambient dimension to scale exponentially with the total sample size. We develop a unified algorithmic framework that encompasses a variety of distributed algorithms, new and old, such as primal, primal-dual, and gradient tracking-based methods, for which we establish both statistical and computational guarantees. Our findings demonstrate that, under standard data generation models, appropriate network connectivity and algorithm tuning, the studied schemes converge to statistically optimal estimates at a linear rate. However, the dependencies of convergence rate on the ambient dimension exhibit a noteworthy difference, ranging from linear to independent scaling. This fact is a new, interesting phenomenon distinctive of the high-dimensional setting and revealed by this study.
引用
收藏
页码:471 / 475
页数:5
相关论文
共 50 条
  • [31] SPARSE LINEAR REGRESSION WITH BETA PROCESS PRIORS
    Chen, Bo
    Paisley, John
    Carin, Lawrence
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 1234 - 1237
  • [32] Robust and sparse estimators for linear regression models
    Smucler, Ezequiel
    Yohai, Victor J.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 111 : 116 - 130
  • [33] Sparse linear regression from perturbed data
    Fosson, Sophie M.
    Cerone, Vito
    Regruto, Diego
    AUTOMATICA, 2020, 122
  • [34] A sparse linear regression model for incomplete datasets
    Veras, Marcelo B. A.
    Mesquita, Diego P. P.
    Mattos, Cesar L. C.
    Gomes, Joao P. P.
    PATTERN ANALYSIS AND APPLICATIONS, 2020, 23 (03) : 1293 - 1303
  • [35] Minimax Rate of Testing in Sparse Linear Regression
    Carpentier, A.
    Collier, O.
    Comminges, L.
    Tsybakov, A. B.
    Wang, Yu
    AUTOMATION AND REMOTE CONTROL, 2019, 80 (10) : 1817 - 1834
  • [36] Learning a Nonnegative Sparse Graph for Linear Regression
    Fang, Xiaozhao
    Xu, Yong
    Li, Xuelong
    Lai, Zhihui
    Wong, Wai Keung
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (09) : 2760 - 2771
  • [37] Minimax Rate of Testing in Sparse Linear Regression
    A. Carpentier
    O. Collier
    L. Comminges
    A. B. Tsybakov
    Yu. Wang
    Automation and Remote Control, 2019, 80 : 1817 - 1834
  • [38] A unifying view of sparse approximate Gaussian process regression
    Quiñonero-Candela, JQ
    Rasmussen, CE
    JOURNAL OF MACHINE LEARNING RESEARCH, 2005, 6 : 1939 - 1959
  • [39] Fast Algorithms for Sparse Reduced-Rank Regression
    Dubois, Benjamin
    Delmas, Jean-Francois
    Obozinski, Guillaume
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [40] Algorithms for Subset Selection in Linear Regression
    Das, Abhimanyu
    Kempe, David
    STOC'08: PROCEEDINGS OF THE 2008 ACM INTERNATIONAL SYMPOSIUM ON THEORY OF COMPUTING, 2008, : 45 - 54