Assessment of Driver's Stress using Multimodal Biosignals and Regularized Deep Kernel Learning

被引:1
|
作者
Roha, Vishal Singh [1 ,2 ,5 ]
Ganapathy, Nagarajan [3 ]
Spicher, Nicolai [4 ]
Saha, Sriparna [5 ]
Deserno, Thomas M. [1 ,2 ]
机构
[1] TU Braunschweig, Peter L Reichertz Inst Med Informat, Braunschweig, Germany
[2] Hannover Med Sch, Braunschweig, Germany
[3] Indian Inst Technol, Dept Biomed Engn, Hyderabad, India
[4] Univ Med Ctr Gottingen, Inst Med Informat, Gottingen, Germany
[5] Indian Inst Technol, Dept Comp Sci Engn, Patna, Bihar, India
关键词
D O I
10.1109/EMBC40787.2023.10340564
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we classify the stress state of car drivers using multimodal physiological signals and regularized deep kernel learning. Using a driving simulator in a controlled environment, we acquire electrocardiography (ECG), electrodermal activity (EDA), photoplethysmography (PPG), and respiration rate (RESP) from N = 10 healthy drivers in experiments of 25min duration with different stress states (5min resting, 10min driving, 10min driving + answering cognitive questions). We manually remove unusable segments and approximately 4h of data remain. Multimodal time and frequency features are extracted and employed to regularized deep kernel machine learning based on a fusion framework. Task-specific representations of different physiological signals are combined using intermediate fusion. Subsequently, the fused multimodal features are fed a support vector machine (SVM) and a random forest (RF) for stress classification. The experimental results show that the proposed approach can discriminate between stress states. The combination of PPG and ECG using RF as classifier yields the highest F1-score of 0.97 in the test set. PPG only and RF yield a maximum F1-score of 0.90. Furthermore, subject-specific cross-validation improves performance. ECG and PPG signals are reliable in classifying the stress state of a car driver. In summary, the proposed framework could be extended to real-time stress state assessment in driving conditions.
引用
收藏
页数:4
相关论文
共 50 条
  • [11] Predicting financial distress using multimodal data: An attentive and regularized deep learning method
    Che, Wanliu
    Wang, Zhao
    Jiang, Cuiqing
    Abedin, Mohammad Zoynul
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (04)
  • [12] Biosignals learning and synthesis using deep neural networks
    Belo, David
    Rodrigues, Joao
    Vaz, Joao R.
    Pezarat-Correia, Pedro
    Gamboa, Hugo
    BIOMEDICAL ENGINEERING ONLINE, 2017, 16
  • [13] Multimodal deep learning for Alzheimer's disease dementia assessment
    Qiu, Shangran
    Miller, Matthew, I
    Joshi, Prajakta S.
    Lee, Joyce C.
    Xue, Chonghua
    Ni, Yunruo
    Wang, Yuwei
    De Anda-Duran, Ileana
    Hwang, Phillip H.
    Cramer, Justin A.
    Dwyer, Brigid C.
    Hao, Honglin
    Kaku, Michelle C.
    Kedar, Sachin
    Lee, Peter H.
    Mian, Asim Z.
    Murman, Daniel L.
    O'Shea, Sarah
    Paul, Aaron B.
    Saint-Hilaire, Marie-Helene
    Sartor, E. Alton
    Saxena, Aneeta R.
    Shih, Ludy C.
    Small, Juan E.
    Smith, Maximilian J.
    Swaminathan, Arun
    Takahashi, Courtney E.
    Taraschenko, Olga
    You, Hui
    Yuan, Jing
    Zhou, Yan
    Zhu, Shuhan
    Alosco, Michael L.
    Mez, Jesse
    Stein, Thor D.
    Poston, Kathleen L.
    Au, Rhoda
    Kolachalama, Vijaya B.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [14] Multimodal deep learning for Alzheimer’s disease dementia assessment
    Shangran Qiu
    Matthew I. Miller
    Prajakta S. Joshi
    Joyce C. Lee
    Chonghua Xue
    Yunruo Ni
    Yuwei Wang
    Ileana De Anda-Duran
    Phillip H. Hwang
    Justin A. Cramer
    Brigid C. Dwyer
    Honglin Hao
    Michelle C. Kaku
    Sachin Kedar
    Peter H. Lee
    Asim Z. Mian
    Daniel L. Murman
    Sarah O’Shea
    Aaron B. Paul
    Marie-Helene Saint-Hilaire
    E. Alton Sartor
    Aneeta R. Saxena
    Ludy C. Shih
    Juan E. Small
    Maximilian J. Smith
    Arun Swaminathan
    Courtney E. Takahashi
    Olga Taraschenko
    Hui You
    Jing Yuan
    Yan Zhou
    Shuhan Zhu
    Michael L. Alosco
    Jesse Mez
    Thor D. Stein
    Kathleen L. Poston
    Rhoda Au
    Vijaya B. Kolachalama
    Nature Communications, 13
  • [15] Multimodal Assessment of Parkinson's Disease: A Deep Learning Approach
    Camilo Vasquez-Correa, Juan
    Arias-Vergara, Tomas
    Orozco-Arroyave, J. R.
    Eskofier, Bjoern
    Klucken, Jochen
    Noeth, Elmar
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (04) : 1618 - 1630
  • [16] SIM-CNN: Self-supervised Individualized Multimodal Learning for Stress Prediction on Nurses Using Biosignals
    Eom, Sunmin
    Eom, Sunwoo
    Washington, Peter
    MACHINE LEARNING FOR MULTIMODAL HEALTHCARE DATA, ML4MHD 2023, 2024, 14315 : 155 - 171
  • [17] Multimodal Data Fusion Using Non-Sparse Multi-Kernel Learning With Regularized Label Softening
    Wang, Peihua
    Qiu, Chengyu
    Wang, Jiali
    Wang, Yulong
    Tang, Jiaxi
    Huang, Bin
    Su, Jian
    Zhang, Yuanpeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 6244 - 6252
  • [18] Soft Spatial Attention-Based Multimodal Driver Action Recognition Using Deep Learning
    Jegham, Imen
    Ben Khalifa, Anouar
    Alouani, Ihsen
    Mahjoub, Mohamed Ali
    IEEE SENSORS JOURNAL, 2021, 21 (02) : 1918 - 1925
  • [19] Detection of Stress Levels from Biosignals Measured in Virtual Reality Environments Using a Kernel-Based Extreme Learning Machine
    Cho, Dongrae
    Ham, Jinsil
    Oh, Jooyoung
    Park, Jeanho
    Kim, Sayup
    Lee, Nak-Kyu
    Lee, Boreom
    SENSORS, 2017, 17 (10)
  • [20] Real-World Driver Stress Recognition and Diagnosis Based on Multimodal Deep Learning and Fuzzy EDAS Approaches
    Amin, Muhammad
    Ullah, Khalil
    Asif, Muhammad
    Shah, Habib
    Mehmood, Arshad
    Khan, Muhammad Attique
    DIAGNOSTICS, 2023, 13 (11)