HoLDER CONTINUITY AND BOX DIMENSION FOR THE MIXED RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL

被引:1
|
作者
Tian, Long [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Peoples R China
关键词
Mixed Riemann-Liouville Fractional Integral; Holder Continuity; Box Dimension; BOUNDED VARIATION;
D O I
10.1142/S0218348X23500044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the Holder continuity and the estimate of the Box dimension of R(alpha 1,alpha 2)f (x, y), which is called the mixed Riemann-Liouville fractional integral of the continuous function f (x, y). We focus on the case that f (x, y) is mu th-order Ho spexpressioncing diexpressioneresis lder continuous, where mu is an element of (0, 1). By using the approximated integral, we obtain that, R alpha 1,alpha 2f (x, y) is alpha 1-mu th-order Ho spexpressioncing diexpressioneresis lder continuous, and the Box dimension of the graph of R alpha(1),alpha(2)f (x, y) is less than or equal to 3- (alpha) /(1-mu), provided that alpha + mu < 1. Here alpha = min{alpha 1, alpha 2}. By using Stein's Lemma, we prove that R alpha(1),alpha(2)f (x, y) is (alpha + mu)th-order Ho spexpressioncing diexpressioneresis lder continuous, provided that alpha + mu < 1, and the Box dimension of the graph of R alpha(1),alpha(2)f (x, y) is less than or equal to 3 - alpha - mu. Moreover, we also illustrate that the latter conclusion is sharp.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] SEVERAL INTEGRAL INEQUALITIES FOR GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL OPERATORS
    Galeano Delgado, Juan Gabriel
    Napoles Valdes, Juan E.
    Perez Reyes, Edgardo
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2021, 70 (01): : 269 - 278
  • [32] An extension of Schweitzer's inequality to Riemann-Liouville fractional integral
    Abdeljawad, Thabet
    Meftah, Badreddine
    Lakhdari, Abdelghani
    Alqudah, Manar A.
    OPEN MATHEMATICS, 2024, 22 (01):
  • [33] Fractional Differential and Integral Equations of Riemann-Liouville versus Caputo
    Vatsala, A. S.
    Lakshmikantham, V.
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS '34, 2008, 1067 : 87 - +
  • [34] On a sequential fractional differential problem with Riemann-Liouville integral conditions
    Benmehidi, Hammou
    Dahmani, Zoubir
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (04) : 893 - 915
  • [35] ON THE SET OF SOLUTIONS OF FRACTIONAL ORDER RIEMANN-LIOUVILLE INTEGRAL INCLUSIONS
    Abbas, Said
    Benchohra, Mouffak
    DEMONSTRATIO MATHEMATICA, 2013, 46 (02) : 271 - 281
  • [36] BOUNDEDNESS OF RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATOR IN MORREY SPACES
    Senouci, M. A.
    EURASIAN MATHEMATICAL JOURNAL, 2021, 12 (01): : 82 - 91
  • [37] On Some Generalized Integral Inequalities for Riemann-Liouville Fractional Integrals
    Sarikaya, Mehmet Zeki
    Filiz, Hatice
    Kiris, Mehmet Eyup
    FILOMAT, 2015, 29 (06) : 1307 - 1314
  • [38] Some Riemann-Liouville fractional integral inequalities for convex functions
    Farid, Ghulam
    JOURNAL OF ANALYSIS, 2019, 27 (04): : 1095 - 1102
  • [39] RIEMANN-STIELTJES INTEGRAL BOUNDARY VALUE PROBLEMS INVOLVING MIXED RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES
    Ahmad, Bashir
    Alruwaily, Ymnah
    Alsaedi, Ahmed
    Ntouyas, Sotiris K.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2021,
  • [40] Riemann-stieltjes integral boundary value problems involving mixed riemann-liouville and caputo fractional derivatives
    Ahmad B.
    Alruwaily Y.
    Alsaedi A.
    Ntouyas S.K.
    Journal of Nonlinear Functional Analysis, 2021, 2021 (01):