Value Distribution of Logarithmic Derivatives of Quadratic Twists of Automorphic L-functions

被引:0
|
作者
Akbary, Amir [1 ]
Hamieh, Alia [2 ]
机构
[1] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, Canada
[2] Univ Northern British Columbia, Dept Math & Stat, Prince George, BC V2N 4Z9, Canada
来源
QUARTERLY JOURNAL OF MATHEMATICS | 2024年 / 75卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
PRIME NUMBER THEOREM;
D O I
10.1093/qmath/haad042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let $d\in\mathbb{N}$ and pi be a fixed cuspidal automorphic representation of $\mathrm{GL}_{d}(\mathbb{A}_{\mathbb{Q}})$ with unitary central character. We determine the limiting distribution of the family of values $-\frac{L<^>{\prime}}{L}(1+it,\pi\otimes\chi_D)$ as D varies over fundamental discriminants. Here, t is a fixed real number and chi D is the real character associated with D. We establish an upper bound on the discrepancy in the convergence of this family to its limiting distribution. As an application of this result, we obtain an upper bound on the small values of $\left|\frac{L<^>{\prime}}{L}(1,\pi\otimes\chi_D)\right|$ when pi is self-dual.
引用
收藏
页码:97 / 137
页数:42
相关论文
共 50 条