Finite time blowup for the nonlinear Schrödinger equation with a delta potential

被引:0
|
作者
Hauser, Brandon [1 ]
Holmes, John [1 ]
O'Keefe, Eoghan [1 ]
Raynor, Sarah [1 ]
Yu, Chuanyang [1 ]
机构
[1] Wake Forest Univ, Dept Math & Stat, Winston Salem, NC 27109 USA
来源
INVOLVE, A JOURNAL OF MATHEMATICS | 2023年 / 16卷 / 04期
关键词
well-posedness; initial value problem; Schrodinger equation; NLS; Cauchy problem; Sobolev spaces;
D O I
10.2140/involve.2023.16.591
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Cauchy problem for the nonlinear Schrodinger equation with a delta potential, which can be written as iut + Au + (|u|2 sigma + c8)u = 0. We show that under certain conditions, the L infinity norm of the solution tends to infinity in finite time. In order to prove this, we study the associated Lagrangian and Hamil-tonian, and derive an estimate of the associated variance. We also derive several con-servation laws which a classical solution of the Cauchy problem must also satisfy.
引用
收藏
页码:591 / 604
页数:16
相关论文
共 50 条
  • [31] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [32] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40
  • [33] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [34] Solution to the Schrödinger Equation for the Time-Dependent Potential
    Chao-Yun Long
    Shui-Jie Qin
    Zhu-Hua Yang
    Guang-Jie Guo
    International Journal of Theoretical Physics, 2009, 48 : 981 - 985
  • [35] On the inhomogeneous nonlinear Schrödinger equation with harmonic potential and unbounded coefficient
    Jianqing Chen
    Czechoslovak Mathematical Journal, 2010, 60 : 715 - 736
  • [36] On the Problem of Dynamical Localization in the Nonlinear Schrödinger Equation with a Random Potential
    Shmuel Fishman
    Yevgeny Krivolapov
    Avy Soffer
    Journal of Statistical Physics, 2008, 131 : 843 - 865
  • [37] Ground States for the Nonlinear Schrödinger Equation with Critical Growth and Potential
    Kang, Jin-Cai
    Tang, Chun-Lei
    RESULTS IN MATHEMATICS, 2024, 79 (04)
  • [38] On Traveling Waves of the Nonlinear Schrödinger Equation Escaping a Potential Well
    Ivan Naumkin
    Pierre Raphaël
    Annales Henri Poincaré, 2020, 21 : 1677 - 1758
  • [39] Low order nonconforming finite element method for time-dependent nonlinear Schrödinger equation
    Chao Xu
    Jiaquan Zhou
    Dongyang Shi
    Houchao Zhang
    Boundary Value Problems, 2018
  • [40] Scattering of position-dependent mass Schrödinger equation with delta potential
    Hassan Hassanabadi
    Won Sang Chung
    Soroush Zare
    Motahareh Alimohammadi
    The European Physical Journal Plus, 132