Hybrid-Scale Hierarchical Transformer for Remote Sensing Image Super-Resolution

被引:9
|
作者
Shang, Jianrun [1 ]
Gao, Mingliang [1 ]
Li, Qilei [2 ]
Pan, Jinfeng [1 ]
Zou, Guofeng [1 ]
Jeon, Gwanggil [1 ,3 ]
机构
[1] Shandong Univ Technol, Sch Elect & Elect Engn, Zibo 255000, Peoples R China
[2] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London E1 4NS, England
[3] Incheon Natl Univ, Dept Embedded Syst Engn, Incheon 22012, South Korea
基金
中国国家自然科学基金;
关键词
super-resolution; remote sensing image; convolutional neural network; transformer; self-similarity; ALGORITHM;
D O I
10.3390/rs15133442
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Super-resolution (SR) technology plays a crucial role in improving the spatial resolution of remote sensing images so as to overcome the physical limitations of spaceborne imaging systems. Although deep convolutional neural networks have achieved promising results, most of them overlook the advantage of self-similarity information across different scales and high-dimensional features after the upsampling layers. To address the problem, we propose a hybrid-scale hierarchical transformer network (HSTNet) to achieve faithful remote sensing image SR. Specifically, we propose a hybrid-scale feature exploitation module to leverage the internal recursive information in single and cross scales within the images. To fully leverage the high-dimensional features and enhance discrimination, we designed a cross-scale enhancement transformer to capture long-range dependencies and efficiently calculate the relevance between high-dimension and low-dimension features. The proposed HSTNet achieves the best result in PSNR and SSIM with the UCMecred dataset and AID dataset. Comparative experiments demonstrate the effectiveness of the proposed methods and prove that the HSTNet outperforms the state-of-the-art competitors both in quantitative and qualitative evaluations.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] A Comprehensive Benchmark for Optical Remote Sensing Image Super-Resolution
    Aybar, Cesar
    Montero, David
    Donike, Simon
    Kalaitzis, Freddie
    Gomez-Chova, Luis
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [42] Remote Sensing Image Super-Resolution Based on Lorentz Fitting
    Guoxing Huang
    Yipeng Liu
    Weidang Lu
    Yu Zhang
    Hong Peng
    Mobile Networks and Applications, 2022, 27 : 1615 - 1628
  • [43] Remote Sensing Image Super-Resolution using Deep Learning
    Rajeshwari, P.
    Priya, Pamujula Lakshmi
    Pooja, M.
    Abhishek, G.
    2024 IEEE SPACE, AEROSPACE AND DEFENCE CONFERENCE, SPACE 2024, 2024, : 665 - 668
  • [44] Remote Sensing Image Super-Resolution Based on Lorentz Fitting
    Huang, Guoxing
    Liu, Yipeng
    Lu, Weidang
    Zhang, Yu
    Peng, Hong
    MOBILE NETWORKS & APPLICATIONS, 2022, 27 (04): : 1615 - 1628
  • [45] Transformer for Single Image Super-Resolution
    Lu, Zhisheng
    Li, Juncheng
    Liu, Hong
    Huang, Chaoyan
    Zhang, Linlin
    Zeng, Tieyong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 456 - 465
  • [46] STGAN: Swin Transformer-Based GAN to Achieve Remote Sensing Image Super-Resolution Reconstruction
    Huo, Wei
    Zhang, Xiaodan
    You, Shaojie
    Zhang, Yongkun
    Zhang, Qiyuan
    Hu, Naihao
    APPLIED SCIENCES-BASEL, 2025, 15 (01):
  • [47] ESTUGAN: Enhanced Swin Transformer with U-Net Discriminator for Remote Sensing Image Super-Resolution
    Yu, Chunhe
    Hong, Lingyue
    Pan, Tianpeng
    Li, Yufeng
    Li, Tingting
    ELECTRONICS, 2023, 12 (20)
  • [48] SWCGAN: Generative Adversarial Network Combining Swin Transformer and CNN for Remote Sensing Image Super-Resolution
    Tu, Jingzhi
    Mei, Gang
    Ma, Zhengjing
    Piccialli, Francesco
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 5662 - 5673
  • [49] Remote Sensing Image Super-Resolution via Residual-Dense Hybrid Attention Network
    Yu, Bo
    Lei, Bin
    Guo, Jiayi
    Sun, Jiande
    Li, Shengtao
    Xie, Guangshuai
    REMOTE SENSING, 2022, 14 (22)
  • [50] Remote Sensing Image Super-Resolution via Multi-Scale Texture Transfer Network
    Wang, Yu
    Shao, Zhenfeng
    Lu, Tao
    Huang, Xiao
    Wang, Jiaming
    Chen, Xitong
    Huang, Haiyan
    Zuo, Xiaolong
    REMOTE SENSING, 2023, 15 (23)