QTL Mapping and Transcriptome Analysis Reveal Candidate Genes Regulating Seed Color in Brassica napus

被引:3
|
作者
Liu, Fangying [1 ]
Chen, Hao [1 ]
Yang, Liu [1 ]
You, Liang [1 ]
Ju, Jianye [1 ]
Yang, Shujie [1 ]
Wang, Xiaolin [1 ]
Liu, Zhongsong [1 ]
机构
[1] Hunan Agr Univ, Coll Agron, Changsha 410128, Peoples R China
基金
中国国家自然科学基金;
关键词
rapeseed; yellow seed; genetic map; quantitative trait locus; coexpression network; flavonoid; FLAVONOID BIOSYNTHESIS; MAJOR QTL; IDENTIFICATION; COLOCALIZATION; ACCUMULATION; ALIGNMENT; PATHWAYS; JUNCEA;
D O I
10.3390/ijms24119262
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Yellow seeds are desirable in rapeseed breeding because of their higher oil content and better nutritional quality than black seeds. However, the underlying genes and formation mechanism of yellow seeds remain unclear. Here, a novel yellow-seeded rapeseed line (Huangaizao, HAZ) was crossed with a black-seeded rapeseed line (Zhongshuang11, ZS11) to construct a mapping population of 196 F-2 individuals, based on which, a high-density genetic linkage map was constructed. This map, comprising 4174 bin markers, was 1618.33 cM in length and had an average distance of 0.39 cM between its adjacent markers. To assess the seed color of the F-2 population, three methods (imaging, spectrophotometry, and visual scoring) were used and a common major quantitative trait locus (QTL) on chromosome A09, explaining 10.91-21.83% of the phenotypic variance, was detected. Another minor QTL, accounting for 6.19-6.69% of the phenotypic variance, was detected on chromosome C03, only by means of imaging and spectrophotometry. Furthermore, a dynamic analysis of the differential expressions between the parental lines showed that flavonoid biosynthesis-related genes were down-regulated in the yellow seed coats at 25 and 35 days after flowering. A coexpression network between the differentially expressed genes identified 17 candidate genes for the QTL intervals, including a flavonoid structure gene, novel4557 (BnaC03.TT4), and two transcription factor genes, namely, BnaA09G0616800ZS (BnaA09.NFYA8) and BnaC03G0060200ZS (BnaC03.NAC083), that may regulate flavonoid biosynthesis. Our study lays a foundation for further identifying the genes responsible for and understanding the regulatory mechanism of yellow seed formation in Brassica napus.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] An integrated nitrogen utilization gene network and transcriptome analysis reveal candidate genes in response to nitrogen deficiency in Brassica napus
    Li, Pengfeng
    Du, Runjie
    Li, Zhaopeng
    Chen, Zhuo
    Li, Jiana
    Du, Hai
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [32] Mining Candidate Genes for Leaf Angle in Brassica napus L. by Combining QTL Mapping and RNA Sequencing Analysis
    Peng, Aoyi
    Li, Shuyu
    Wang, Yuwen
    Cheng, Fengjie
    Chen, Jun
    Zheng, Xiaoxiao
    Xiong, Jie
    Ding, Ge
    Zhang, Bingchao
    Zhai, Wen
    Song, Laiqiang
    Wei, Wenliang
    Chen, Lunlin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (17)
  • [33] An integrated QTL mapping and transcriptome sequencing provides further molecular insights and candidate genes for stem strength in rapeseed (Brassica napus L.)
    Zhengshu Tian
    Xinfa Wang
    Xiaoling Dun
    Kaiqin Zhao
    Hanzhong Wang
    Lijun Ren
    Theoretical and Applied Genetics, 2024, 137
  • [34] An integrated QTL mapping and transcriptome sequencing provides further molecular insights and candidate genes for stem strength in rapeseed (Brassica napus L.)
    Tian, Zhengshu
    Wang, Xinfa
    Dun, Xiaoling
    Zhao, Kaiqin
    Wang, Hanzhong
    Ren, Lijun
    THEORETICAL AND APPLIED GENETICS, 2024, 137 (02)
  • [35] QTL Mapping of Seed Glucosinolate Content Responsible for Environment in Brassica napus
    He, Yajun
    Fu, Ying
    Hu, Dingxue
    Wei, Dayong
    Qian, Wei
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [36] QTL Mapping for Seed Germination Response to Drought Stress in Brassica napus
    Gad, Mahmoud
    Chao, Hongbo
    Li, Huaixin
    Zhao, Weiguo
    Lu, Guangyuan
    Li, Maoteng
    FRONTIERS IN PLANT SCIENCE, 2021, 11
  • [37] Fine mapping of the major QTL for seed coat color in Brassica rapa var. Yellow Sarson by use of NIL populations and transcriptome sequencing for identification of the candidate genes
    Zhao, Huiyan
    Basu, Urmila
    Kebede, Berisso
    Qu, Cunmin
    Li, Jiana
    Rahman, Habibur
    PLOS ONE, 2019, 14 (02):
  • [38] Association mapping of seed quality traits in Brassica napus L. using GWAS and candidate QTL approaches
    Gajardo, Humberto A.
    Wittkop, Benjamin
    Soto-Cerda, Braulio
    Higgins, Erin E.
    Parkin, Isobel A. P.
    Snowdon, Rod J.
    Federico, Maria L.
    Iniguez-Luy, Federico L.
    MOLECULAR BREEDING, 2015, 35 (06)
  • [39] Association mapping of seed quality traits in Brassica napus L. using GWAS and candidate QTL approaches
    Humberto A. Gajardo
    Benjamin Wittkop
    Braulio Soto-Cerda
    Erin E. Higgins
    Isobel A. P. Parkin
    Rod J. Snowdon
    Maria L. Federico
    Federico L. Iniguez-Luy
    Molecular Breeding, 2015, 35
  • [40] Epigenetic QTL Mapping in Brassica napus
    Long, Yan
    Xia, Wei
    Li, Ruiyuan
    Wang, Jing
    Shao, Mingqin
    Feng, Ji
    King, Graham J.
    Meng, Jinling
    GENETICS, 2011, 189 (03) : 1093 - U585