Deep Stacked Autoencoder-Based Long-Term Spectrum Prediction Using Real-World Data

被引:15
|
作者
Pan, Guangliang [1 ]
Wu, Qihui [1 ]
Ding, Guoru [2 ]
Wang, Wei [1 ]
Li, Jie [1 ]
Xu, Fuyuan [3 ]
Zhou, Bo [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Key Lab Dynam Cognit Syst Electromagnet Spectrum S, Minist Ind & Informat Technol, Nanjing 211106, Peoples R China
[2] Army Engn Univ, Coll Commun Engn, Nanjing 210007, Peoples R China
[3] Nanjing Elect Equipment Res Inst, Nanjing 210000, Peoples R China
基金
中国国家自然科学基金;
关键词
Predictive models; Feature extraction; Hidden Markov models; Time-frequency analysis; Frequency measurement; Autoregressive processes; Data models; Spectrum prediction; temporal-spectral-spatial correlations; deep learning; stacked autoencoder; NEURAL-NETWORKS;
D O I
10.1109/TCCN.2023.3254524
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Spectrum prediction is challenging due to its multi-dimension, complex inherent dependency, and heterogeneity among the spectrum data. In this paper, we first propose a stacked autoencoder (SAE) and bi-directional long short-term memory (Bi-LSTM) based spectrum prediction method (SAEL-SP). Specifically, a SAE is designed to extract the hidden features (semantic coding) of spectrum data in an unsupervised manner. Then, the output of SAE is connected to a predictor (Bi-LSTM), which is used for long-term prediction by learning hidden features. The main advantage of SAEL-SP is that the underlying features of spectrum data can be retained automatically, layer by layer, rather than designing them manually. To further improve the prediction accuracy of SAEL-SP and achieve a wider bandwidth prediction, we propose a SAE-based spectrum prediction method using temporal-spectral-spatial features of data (SAE-TSS). Different from SAEL-SP, the input of SAE-TSS is the image format. SAE-TSS achieves higher prediction accuracy than SAEL-SP using the features extracted from time, frequency, and space dimensions. We use a real-world spectrum dataset to validate the effectiveness of two prediction frameworks. Experiment results show that both SAEL-SP and SAE-TSS outperform existing spectrum prediction approaches.
引用
收藏
页码:534 / 548
页数:15
相关论文
共 50 条
  • [21] Deep-Learning-Based Real-Time Road Traffic Prediction Using Long-Term Evolution Access Data
    Ji, Byoungsuk
    Hong, Ellen J.
    SENSORS, 2019, 19 (23)
  • [22] Semi-supervised stacked autoencoder-based deep hierarchical semantic feature for real-time fingerprint liveness detection
    Chengsheng Yuan
    Xianyi Chen
    Peipeng Yu
    Ruohan Meng
    Weijin Cheng
    Q. M. Jonathan Wu
    Xingming Sun
    Journal of Real-Time Image Processing, 2020, 17 : 55 - 71
  • [23] Long-term drought prediction using deep neural networks based on geospatial weather data
    Marusov, Alexander
    Grabar, Vsevolod
    Maximov, Yury
    Sotiriadi, Nazar
    Bulkin, Alexander
    Zaytsev, Alexey
    ENVIRONMENTAL MODELLING & SOFTWARE, 2024, 179
  • [24] Semi-supervised stacked autoencoder-based deep hierarchical semantic feature for real-time fingerprint liveness detection
    Yuan, Chengsheng
    Chen, Xianyi
    Yu, Peipeng
    Meng, Ruohan
    Cheng, Weijin
    Wu, Q. M. Jonathan
    Sun, Xingming
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2020, 17 (01) : 55 - 71
  • [25] Long-Term Real-World Effectiveness of Pharmacotherapies for Schizoaffective Disorder
    Lintunen, Jonne
    Taipale, Heidi
    Tanskanen, Antti
    Mittendorfer-Rutz, Ellenor
    Tiihonen, Jari
    Lahteenvuo, Markku
    SCHIZOPHRENIA BULLETIN, 2021, 47 (04) : 1099 - 1107
  • [26] Long-Term, Real-World Safety of Adalimumab in Rheumatoid Arthritis
    Harrold, Leslie R.
    Griffith, Jenny
    Litman, Heather J.
    Gershenson, Bernice
    Islam, Syecl
    Barr, Christine J.
    Guo, Dianlin
    Zueger, Patrick
    Fay, Jonathan
    Greenberg, Jeffrey
    ARTHRITIS & RHEUMATOLOGY, 2018, 70
  • [27] Long-term persistence with mirabegron in a real-world clinical setting
    Wada, Naoki
    Watanabe, Masaki
    Banjo, Hiroko
    Tsuchida, Miyu
    Hori, Junichi
    Tamaki, Gaku
    Azumi, Makoto
    Kita, Masafumi
    Kakizaki, Hidehiro
    INTERNATIONAL JOURNAL OF UROLOGY, 2018, 25 (05) : 501 - 506
  • [28] Real-world long-term battery longevity of leadless pacemakers
    Breeman, K. T. N.
    Dijkshoorn, L. A.
    Beurskens, N. E. G.
    Wilde, A. A. M.
    Tjong, F. V. Y.
    Knops, R. E.
    EUROPEAN HEART JOURNAL, 2022, 43 : 486 - 486
  • [30] A new framework for damage detection of steel frames using burg autoregressive and stacked autoencoder-based deep neural network
    Viet-Linh Tran
    Innovative Infrastructure Solutions, 2022, 7