Local vanishing for toric varieties

被引:0
|
作者
Shen, Wanchun [1 ]
Venkatesh, Sridhar [2 ]
Vo, Anh Duc [1 ]
机构
[1] Harvard Univ, Dept Math, 1 Oxford St, Cambridge, MA 02138 USA
[2] Univ Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA
关键词
14M25; 14F17; 14B05;
D O I
10.1007/s00229-024-01553-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a toric variety. We establish vanishing (and non-vanishing) results for the sheaves Ri f(*)Omega(p)((X) over tilde)(log E), where f : (X) over tilde -> X is a strong log resolution of singularities with reduced exceptional divisor E. These extend the local vanishing theorem for toric varieties in Mustata et al. (J. Inst. Math. Jussieu 19(3):801-819, 2020). Our consideration of these sheaves is motivated by the notion of k-rational singularities introduced by Friedman and Laza (Higher Du Bois and higher rational singularities, 2001). In particular, our results lead to criteria for toric varieties to have k-rational singularities, as defined in Shen et al. (On k-Du Bois and k-rational singularities, 2023).
引用
收藏
页码:617 / 634
页数:18
相关论文
共 50 条
  • [31] Arithmetic toric varieties
    Elizondo, E. Javier
    Lima-Filho, Paulo
    Sottile, Frank
    Teitler, Zach
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (2-3) : 216 - 241
  • [32] Toric degenerations of toric varieties and tropical curves
    Nishinou, Takeo
    Siebert, Bernd
    DUKE MATHEMATICAL JOURNAL, 2006, 135 (01) : 1 - 51
  • [33] A primer on toric varieties
    Liana Heuberger
    European Journal of Mathematics, 2022, 8 : 952 - 971
  • [34] Extensions of Toric Varieties
    Sahin, Mesut
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [35] Computing with toric varieties
    Verrill, Helena
    Joyner, David
    JOURNAL OF SYMBOLIC COMPUTATION, 2007, 42 (05) : 511 - 532
  • [36] Homogeneous Toric Varieties
    Arzhantsev, Ivan
    Gaifullin, Sergey
    JOURNAL OF LIE THEORY, 2010, 20 (02) : 283 - 293
  • [37] QUOTIENTS OF TORIC VARIETIES
    KAPRANOV, MM
    STURMFELS, B
    ZELEVINSKY, AV
    MATHEMATISCHE ANNALEN, 1991, 290 (04) : 643 - 655
  • [38] Inflections of toric varieties
    Perkinson, D
    MICHIGAN MATHEMATICAL JOURNAL, 2000, 48 : 483 - 515
  • [39] Families of toric varieties
    Halic, M
    MATHEMATISCHE NACHRICHTEN, 2003, 261 : 60 - 84
  • [40] QUATERNIONIC TORIC VARIETIES
    SCOTT, R
    DUKE MATHEMATICAL JOURNAL, 1995, 78 (02) : 373 - 397