Segmentation and classification of lungs CT-scan for detecting COVID-19 abnormalities by deep learning technique: U-Net model

被引:1
|
作者
Moosavi, Abdoulreza S. [1 ]
Mahboobi, Ashraf [2 ]
Arabzadeh, Farzin [3 ]
Ramezani, Nazanin [4 ]
Moosavi, Helia S. [5 ]
Mehrpoor, Golbarg [6 ,7 ]
机构
[1] Golestan Radiol & Sonog Clin, Dept Radiologist, Tehran, Iran
[2] Babol Univ Med Sci, Dept Radiologist, Babol, Iran
[3] Dr Arabzadeh Radiol & Sonog Clin, Dept Radiologist, Behbahan, Iran
[4] Univ Tehran Med Sci, Sch Med, Tehran, Iran
[5] Univ Toronto, Comp Sci Bachelor Degree, Toronto, ON, Canada
[6] Alborz Univ Med Sci, Dept Rheumatologist, Karaj, Iran
[7] Alborz Univ Med Sci, Karaj, Iran
关键词
Classification; COVID-19; deep learning; lungs CT-scan; segmentation; U-Net model;
D O I
10.4103/jfmpc.jfmpc_695_23
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background:Artificial intelligence (AI) techniques have been ascertained useful in the analysis and description of infectious areas in radiological images promptly. Our aim in this study was to design a web-based application for detecting and labeling infected tissues on CT (computed tomography) lung images of patients based on the deep learning (DL) method as a type of AI.Materials and Methods:The U-Net architecture, one of the DL networks, is used as a hybrid model with pre-trained densely connected convolutional network 121 (DenseNet121) architecture for the segmentation process. The proposed model was constructed on 1031 persons' CT-scan images from Ibn Sina Hospital of Iran in 2021 and some publicly available datasets. The network was trained using 6000 slices, validated on 1000 slices images, and tested against the 150 slices. Accuracy, sensitivity, specificity, and area under the receiver operating characteristics (ROC) curve (AUC) were calculated to evaluate model performance.Results:The results indicate the acceptable ability of the U-Net-DenseNet121 model in detecting COVID-19 abnormality (accuracy = 0.88 and AUC = 0.96 for thresholds of 0.13 and accuracy = 0.88 and AUC = 0.90 for thresholds of 0.2). Based on this model, we developed the "Imaging-Tech" web-based application for use at hospitals and clinics to make our project's output more practical and attractive in the market.Conclusion:We designed a DL-based model for the segmentation of COVID-19 CT scan images and, based on this model, constructed a web-based application that, according to the results, is a reliable detector for infected tissue in lung CT-scans. The availability of such tools would aid in automating, prioritizing, fastening, and broadening the treatment of COVID-19 patients globally.
引用
收藏
页码:691 / 698
页数:8
相关论文
共 50 条
  • [21] U-NET Xception: A Two-Stage Segmentation-Classification Model for COVID Detection from Lung CT Scan Images
    Guna, R. T. Akash
    Rahul, K.
    Sikha, O. K.
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 1, 2023, 473 : 335 - 343
  • [22] A COVID-19 medical image Segmentation method based on U-NET
    Wang, Chao
    Zhu, Jin
    Snu, Kai
    Li, Dayi
    Wang, Zaoji
    Yuan, Huining
    IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SYSTEMS SCIENCE AND ENGINEERING (IEEE RASSE 2021), 2021,
  • [23] A Novel Deep Learning Model for Pancreas Segmentation: Pascal U-Net
    Kurnaz, Ender
    Ceylan, Rahime
    Bozkurt, Mustafa Alper
    Cebeci, Hakan
    Koplay, Mustafa
    INTELIGENCIA ARTIFICIAL-IBEROAMERICAN JOURNAL OF ARTIFICIAL INTELLIGENCE, 2024, 27 (74): : 22 - 36
  • [24] Deep Learning Model Development with U-net Architecture for Glottis Segmentation
    Derdiman, Yasar Said
    Koc, Turgay
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [25] Automatic segmentation of paravertebral muscles in abdominal CT scan by U-Net The application of data augmentation technique to increase the Jaccard ratio of deep learning
    Tsai, Kuen-Jang
    Chang, Chih-Chun
    Lo, Lun-Chien
    Chiang, John Y.
    Chang, Chao-Sung
    Huang, Yu-Jung
    MEDICINE, 2021, 100 (44)
  • [26] FractalCovNet architecture for COVID-19 Chest X-ray image Classification and CT-scan image Segmentation
    Munusamy, Hemalatha
    Muthukumar, Karthikeyan Jadarajan
    Gnanaprakasam, Shriram
    Shanmugakani, Thanga Revathi
    Sekar, Aravindkumar
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (03) : 1025 - 1038
  • [27] U-Net Based Chest X-ray Segmentation with Ensemble Classification for Covid-19 and Pneumonia
    Kumarasinghe, K. A. S. H.
    Kolonne, S. L.
    Fernando, K. C. M.
    Meedeniya, D.
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2022, 18 (07) : 161 - 175
  • [28] Automatic COVID-19 CT segmentation using U-Net integrated spatial and channel attention mechanism
    Zhou, Tongxue
    Canu, Stephane
    Ruan, Su
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2021, 31 (01) : 16 - 27
  • [29] CNR-IEMN: A DEEP LEARNING BASED APPROACH TO RECOGNISE COVID-19 FROM CT-SCAN
    Bougourzi, Fares
    Contino, Riccardo
    Distante, Cosimo
    Taleb-Ahmed, Abdelmalik
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 8568 - 8572
  • [30] MiniCovid-Unet: CT-Scan Lung Images Segmentation for COVID-19 Identification
    Salazar-Urbina, Alvaro
    Ventura-Molina, Elias
    Yanez-Marquez, Cornelio
    Aldape-Perez, Mario
    Lopez-Yanez, Itzama
    COMPUTACION Y SISTEMAS, 2024, 28 (01): : 75 - 84