On almost stable linear Weingarten hypersurfaces

被引:0
|
作者
Roth, Julien [1 ]
Upadhyay, Abhitosh [2 ]
机构
[1] Univ Gustave Eiffel, CNRS, LAMA, UMR 8050, F-77447 Marne La Vallee, France
[2] Indian Inst Technol, Sch Math & Comp Sci, Farmagudi 403401, Goa, India
来源
关键词
Hypersurfaces; Higher order mean curvatures; Stability; MEAN-CURVATURE; STABILITY;
D O I
10.1016/j.bulsci.2023.103343
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that generalized linear Weingarten hypersurfaces of the Euclidean space which are almost stable for the associated stability problem are geodesic spheres.(c) 2023 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Revisiting linear Weingarten hypersurfaces immersed into a locally symmetric Riemannian manifold
    de Lima, Eudes L.
    de Lima, Henrique F.
    Rocha, Lucas S.
    EUROPEAN JOURNAL OF MATHEMATICS, 2022, 8 (01) : 388 - 402
  • [32] On the umbilicity of generalized linear Weingarten spacelike hypersurfaces in a Lorentzian space form
    Aquino, Cicero P.
    Batista, Mamba
    de Lima, Henrique F.
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 137 : 228 - 236
  • [33] Generalized Maximum Principles and the Characterization of Linear Weingarten Hypersurfaces in Space Forms
    Aquino, Cicero P.
    de Lima, Henrique F.
    Velasquez, Marco Antonio L.
    MICHIGAN MATHEMATICAL JOURNAL, 2014, 63 (01) : 27 - 40
  • [34] Hypersurfaces of prescribed Weingarten curvature
    Claus Gerhardt
    Mathematische Zeitschrift, 1997, 224 : 167 - 194
  • [35] RIGIDITY FOR COMPLETE WEINGARTEN HYPERSURFACES
    DAJCZER, M
    TENENBLAT, K
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 312 (01) : 129 - 140
  • [36] NEW CHARACTERIZATIONS OF LINEAR WEINGARTEN SPACELIKE HYPERSURFACES IN THE DE SITTER SPACE
    Alias, Luis J.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    PACIFIC JOURNAL OF MATHEMATICS, 2018, 292 (01) : 1 - 19
  • [37] Rotational linear Weingarten hypersurfaces in the Euclidean sphere Sn+1
    Barros, A.
    Silva, J.
    Sousa, P.
    ADVANCES IN GEOMETRY, 2014, 14 (03) : 499 - 512
  • [38] Overdetermined problems for Weingarten hypersurfaces
    Jia, Xiaohan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (02)
  • [39] Overdetermined problems for Weingarten hypersurfaces
    Xiaohan Jia
    Calculus of Variations and Partial Differential Equations, 2020, 59
  • [40] Hypersurfaces of prescribed Weingarten curvature
    Gerhardt, C
    MATHEMATISCHE ZEITSCHRIFT, 1997, 224 (02) : 167 - 194