On almost stable linear Weingarten hypersurfaces

被引:0
|
作者
Roth, Julien [1 ]
Upadhyay, Abhitosh [2 ]
机构
[1] Univ Gustave Eiffel, CNRS, LAMA, UMR 8050, F-77447 Marne La Vallee, France
[2] Indian Inst Technol, Sch Math & Comp Sci, Farmagudi 403401, Goa, India
来源
关键词
Hypersurfaces; Higher order mean curvatures; Stability; MEAN-CURVATURE; STABILITY;
D O I
10.1016/j.bulsci.2023.103343
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that generalized linear Weingarten hypersurfaces of the Euclidean space which are almost stable for the associated stability problem are geodesic spheres.(c) 2023 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Strongly Stable Linear Weingarten Hypersurfaces Immersed in the Hyperbolic Space
    de Lima, Henrique F.
    de Sousa, Antonio F.
    Velasquez, Marco Antonio L.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 2147 - 2160
  • [2] Strongly Stable Linear Weingarten Hypersurfaces Immersed in the Hyperbolic Space
    Henrique F. de. Lima
    Antonio F. de. Sousa
    Marco Antonio L. Velásquez
    Mediterranean Journal of Mathematics, 2016, 13 : 2147 - 2160
  • [3] LINEAR WEINGARTEN HYPERSURFACES IN A UNIT SPHERE
    Chao, Xiaoli
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (02) : 353 - 362
  • [4] LINEAR WEINGARTEN HYPERSURFACES IN A UNIT SPHERE
    Li, Haizhong
    Suh, Young Jin
    Wei, Guoxin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (02) : 321 - 329
  • [5] LINEAR WEINGARTEN HYPERSURFACES IN A REAL SPACE FORM
    Shu, Shichang
    GLASGOW MATHEMATICAL JOURNAL, 2010, 52 : 635 - 648
  • [6] On the geometry of linear Weingarten hypersurfaces in the hyperbolic space
    Cicero P. Aquino
    Henrique F. de Lima
    Monatshefte für Mathematik, 2013, 171 : 259 - 268
  • [7] Linear Weingarten hypersurfaces in locally symmetric manifolds
    Chao, Xiaoli
    Wang, Peijun
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2014, 19 (02): : 50 - 59
  • [8] LINEAR WEINGARTEN HYPERSURFACES IN RIEMANNIAN SPACE FORMS
    Chao, Xiaoli
    Wang, Peijun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (02) : 567 - 577
  • [9] Linear Weingarten λ-biharmonic hypersurfaces in Euclidean space
    Yang, Dan
    Zhang, Jingjing
    Fu, Yu
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (04) : 1533 - 1546
  • [10] Linear Weingarten hypersurfaces in locally symmetric manifolds
    Chao, Xiaoli
    Wang, Peijun
    HOKKAIDO MATHEMATICAL JOURNAL, 2017, 46 (01) : 29 - 40