MOVING SPHERES FOR SEMILINEAR SPECTRAL FRACTIONAL LAPLACIAN EQUATIONS IN THE HALF SPACE

被引:1
|
作者
LI, Jing [1 ]
Ma, Li [2 ]
机构
[1] Henan Normal Univ, Dept Math, Xinxiang 453007, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Math & Phys, 30 Xueyuan Rd, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Moving spheres; spectral fractional Laplacian; monotonicity; symmetry result; ELLIPTIC-EQUATIONS; INTEGRAL-EQUATION; REGULARITY; SYMMETRY; THEOREMS;
D O I
10.3934/dcds.2022172
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a direct method of moving spheres for the spectral fractional Laplacian (- increment D)alpha/2 with 0 < alpha < 2 on the half Euclidean space. As one expected, the key ingredient is the narrow region maximum principle, which can be obtained via the hide monotonicity of the kernel used in the definition of the spectral fractional Laplacian. Using this di-rect method of moving spheres, we establish monotonicity or symmetry results for nonlinear spectral Laplacian equations on the half Euclidean space.
引用
收藏
页码:846 / 859
页数:14
相关论文
共 50 条
  • [41] EXISTENCE OF SOLUTIONS FOR A NONHOMOGENEOUS SEMILINEAR FRACTIONAL LAPLACIAN PROBLEMS
    Mendoza, Jose M.
    HOUSTON JOURNAL OF MATHEMATICS, 2019, 45 (02): : 589 - 599
  • [42] Periodic solutions of a semilinear elliptic equation with a fractional Laplacian
    Gui, Changfeng
    Zhang, Jie
    Du, Zhuoran
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) : 363 - 373
  • [43] Fast numerical approximation for the space-fractional semilinear parabolic equations on surfaces
    Yuanyang Qiao
    Lingzhi Qian
    Xinlong Feng
    Engineering with Computers, 2022, 38 : 1939 - 1953
  • [44] A universal Holder estimate up to dimension 4 for stable solutions to half-Laplacian semilinear equations
    Cabre, Xavier
    Sanz-Perela, Tomas
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 317 : 153 - 195
  • [45] Periodic solutions of a semilinear elliptic equation with a fractional Laplacian
    Changfeng Gui
    Jie Zhang
    Zhuoran Du
    Journal of Fixed Point Theory and Applications, 2017, 19 : 363 - 373
  • [46] Fast numerical approximation for the space-fractional semilinear parabolic equations on surfaces
    Qiao, Yuanyang
    Qian, Lingzhi
    Feng, Xinlong
    ENGINEERING WITH COMPUTERS, 2022, 38 (SUPPL 3) : 1939 - 1953
  • [47] Some solutions of semilinear stochastic equations in a hilbert space with a fractional Brownian motion
    Duncan, T. E.
    Maslowski, B.
    Pasik-Duncan, B.
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 3078 - +
  • [48] Reduced limit approach to semilinear partial differential equations (PDEs) involving the fractional Laplacian with measure data
    Giri, Ratan Kr
    Choudhuri, Debajyoti
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (05) : 2108 - 2125
  • [49] Semilinear fractional stochastic differential equations
    León, JA
    Tudor, C
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2002, 8 (02): : 205 - 226
  • [50] Fractional semilinear equations with causal operators
    Ravi P. Agarwal
    Vasile Asma
    Donal Lupulescu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 257 - 269